京公网安备 11010802034615号
经营许可证编号:京B2-20210330
工业大数据应用:消除数据信息碎片化
大数据、人工智能和人类智慧,成为智能数据时代的三大要素。数据的积累,可以为人类提供更多更细的洞察分析,人类经验得以增强,人类智慧得以增长。
刚刚过去的2016年,是大数据从概念到务实落地的一年。在过去的一年内,互联网行业、电信行业、金融行业、房地产行业、汽车行业、娱乐行业、教育行业、零售行业、能源行业、医药行业、政府机关等都在不同程度的接触和实施大数据。
大数据产业发展了两年后,从探索阶段进入了应用阶段。数据被定义成重要的资源,正在得到企业的重视,在经营过程中发挥着重要的作用。企业看到了数据价值,从被动了解走向主动拥抱。数据如何同业务场景结合,如何变成生产力,如何指导业务决策成为企业最关心的问题。
数据本身是没有价值的,必须同商业需求结合在一起,才能够产生化学反映,体现商业价值。大多数企业还是将精力放在数据架构、技术平台、数据采集等探索工作,没有理顺数据价值应用的发展路径,也没有从数据中看到真正的商业价值,看到智慧的力量。
很多企业业务部门不了解大数据,也不了解大数据的应用场景和价值,因此难以提出大数据的准确需求。由于业务部门需求不清晰,大数据部门又是非盈利部门,企业决策层担心投入比较多的成本,导致了很多企业在搭建大数据部门时犹豫不决,更多的企业是处于观望尝试的态度,从根本上影响了企业在大数据方向的发展,也阻碍了企业积累和挖掘自身的数据资产。因此,这方面需要大数据从业者和专家一起,推动和分享大数据应用场景,让更多的业务人员了解大数据的价值。
大数据时代,企业面临海量的数据,其中80%的数据为非结构化数据。企业需要对所有数据进行整合,将数据作为一种资产进行管理。
数据是对经济和用户需求的反馈,利用数据分析和数据挖掘可以帮助企业发现商业机会并实现数据价值。数据价值可以简单总结为:帮助企业提高效率降低成本、增加商业收入和指导商业决策。数据应用是数据价值的具体体现,智能数据时代的数据应用主要集中在客户分析、数字运营、精准营销、风险控制、智能决策等几个方面。
商业竞争的激烈让时间的价值凸显,很多产品决策和商业决策必须要在短时间内作出,否则将会失去市场先机,并有可能被竞争对手模仿、超越。数据对商业决策的影响力正在不断加强,数据支撑的商业决策分析对时间和准确度的要求越来越敏感。在这种情况下,智能数据时代对企业对要求越来越高,对数据处理技术、数据分析、数据决策要求也将越来越严格。
企业启动大数据最重要的挑战是数据的碎片化。如果不打通这些数据,大数据的价值则非常难挖掘。大数据需要不同数据的关联和整合才能更好的发挥理解客户和理解业务的优势。如何将不同部门的数据打通,并且实现技术和工具共享,才能更好的发挥企业大数据的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29