京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据行业发展现状及趋势预测
大数据媒体KDnuggets就大数据领域的发展现状与趋势采访了8位业内专家,以下是他们的观点。
大数领域专家、科技创业导师,作者
由于亚马逊AWS、Rackspace、Azure等云数据服务的兴起,2016年数据量出现了大规模增长,数据量增长的趋势将在2017年持续。2017年还将出现更多机器学习、认知计算、预测分析相关的项目。2017年依然会面临数据隐私问题,数据科学家、首席数据官、首席架构师等职位在2017年会越来越热门、定位也会越来越清晰。实时数据流和更加复杂的数据管道将重新定义大数据。
IBM数据科学布道师
Hadoop在大数据领域衰落的速度比我预想的更快,MapReduce、HBase,甚至HDFS对于数据科学家也没有以前那么重要了。
2017年最主要的趋势是更多的程序员学习选择数据科学技能,以发展自己的职业生涯。2017年最热门的数据科学项目会聚焦在流媒体分析、嵌入式深度学习、认知物联网(cognitive IoT)、认知聊天机器人、嵌入式机器认知、自动驾驶汽车、计算机视觉和语音识别等领域。同时,我们也会在明年看到新一代的神经网络芯片、GPU和其他的高性能认知计算框架。
Gartner副总裁,知名分析师
2016年大数据最大的一个变化是人们不再谈论大数据了,大数据的概念已经普及。关注的重点逐步转为商业导向,如何管理、评估“信息资产”,以及如何对“信息资产”进行变现。
2017年我们应该努力弄清楚数据权利和责任、所有权,尤其是涉及到物联网数据。目前数据资产在会计业、律师界和保险行业都十分棱模两可。但随着机构投资人和分析师越来越看重企业的信息化程度,这种情况会逐步改善。2017年大公司会越来越注重大数据人才,比如数据经理人和其他信息整合人才。
2016年大数据已经没有前几年那么火热,随着大数据基础设施、软件和理论的发展,大数据分析解决方案已经越来越成熟、普及,不再仅仅局限于少数先行者。随着大数据的成熟,自助服务和自动化得到越来越多的关注。虽然大数据分析解决方案越来越容易获取,但是我们仍然需要具备通信、信息处理技术的专业人员才能使用。随着人工智能、机器学习、VR、AR、物联网、容器技术的发展,大数据解决方案将进入新的阶段,越来越逼近摩尔定律的边界。
Datafloq创始人,《ThinkBigger》作者
对于大数据,2016年是令人激动的一年,大数据不再只是一个热门概念或者流行词语。因为大数据公司已经开发了实际的解决方案和应用。
在2017年这种趋势将会持续,随着技术越来越智能,我们会看到新的应用被开发出来。深度学习和人工智能将变得更加智能,并将更多地应用于组织机构,因为计算能力和数据量不再成为开发智能应用程序的障碍,2017年将是令人兴奋的一年,但随着大数据、智能应用的发展,数据安全问题也越来越严重。
大数据科学家、Adversitement主管
2016年,大数据经历从单一部门到跨部门的应用。物联网数据应用开始在一些关键领域出现,此外,随着云计算平台的发展,为越来越多的机器学习应用研发提供了支持。
2017,我们会看到人工智能的增长、物联网应用的爆发,以及机器学习的广泛应用。技术已经准备好了,而且用户对大数据技术改善体验的需求非常强。根据预测,2020年连网设备数将达到100亿到340亿之间。
斯坦福大学教授、计算学科学家
欧盟已经根据数据的使用和分析模型出台了一个新的隐私保护法。将在2018年1月开始生效。这一法案将会造成怎样的影响现在还不可知,但数据公司一直十分纠结到底哪些数据和分析方法是允许被使用的,比如Google可以分析用户邮件内容,以判定是否为垃圾邮件,但Google到底有没有读取用户邮件内容的权力?
Databricks首席科学家、Apache Spark创始人
公有云正在成为部署大数据的主流方式。根据Apache Spark今年夏天的用户调查,在公有云部署Spark的用户比例达(61%)比使用Hadoop YARN的用户(36%)更高。此外,使用公有云的用户从2015年的51%增长到61%,使用HadoopYARN的用户从2015年的40%下跌到36%。其中的一个原因是亚马逊S3这类云存储产品价格越来越低,越来越稳定,也比Hadoop分布式文件系统更容易管理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28