
一、回顾
介绍了支持向量机的基本概念,线性可分支持向量机的原理以及线性支持向量机的原理,线性可分支持向量机是线性支持向量机的基础。对于线性支持向量机,选择一个合适的惩罚参数,并构造凸二次规划问题:
求得原始问题的对偶问题的最优解,由此可求出原始问题的最优解:
其中中满足的分量。这样便可以求得分离超平面
以及分类决策函数:
线性可分支持向量机算法是线性支持向量机算法的特殊情况。
二、非线性问题的处理方法
在处理非线性问题时,可以通过将分线性问题转化成线性问题,并通过已经构建的线性支持向量机来处理。如下图所示:
(非线性转成线性问题)
通过一种映射可以将输入空间转换到对应的特征空间,体现在特征空间中的是对应的线性问题。核技巧就可以完成这样的映射工作。
1、核函数的定义(摘自《统计机器学习》)
设是输入空间(欧式空间的子集或离散集合),又设为特征空间(希尔伯特空间),如果存在一个从到的映射
使得对所有,函数
满足条件
则称为核函数,为映射函数。
在实际的问题中,通常使用已有的核函数。
2、常用核函数
多项式核函数(Polynomial Kernel Function)
高斯核函数(Gaussian Kernel Function)
三、非线性支持向量机
1、选取适当的核函数和适当的参数,构造原始问题的对偶问题:
求得对应的最优解。
2、选择的一个满足的分量,求:
3、构造决策函数
四、实验仿真
对于非线性可分问题,其图像为:
(原始空间中的图像)
MATLAB代码
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 非线性支持向量机
% 清空内存
clear all;
clc;
% 导入测试数据
A = load('testSetRBF.txt');
%% 区分开训练数据与测试数据
m = size(A);%得到整个数据集的大小
trainA = A(11:m(1,1),:);
testA = A(1:10,:);
% 训练和测试数据集的大小
mTrain = size(trainA);
mTest = size(testA);
% 区分开特征与标签
Xtrain = trainA(:,1:2);
Ytrain = trainA(:,mTrain(1,2))';
Xtest = testA(:,1:2);
Ytest = testA(:,mTest(1,2))';
%% 对偶问题,用二次规划来求解,以求得训练模型
sigma = 0.5;%高斯核中的参数
H = zeros(mTrain(1,1),mTrain(1,1));
for i = 1:mTrain(1,1)
for j = 1:mTrain(1,1)
H(i,j) = GaussianKernalFunction(Xtrain(i,:),Xtrain(j,:),sigma);
H(i,j) = H(i,j)*Ytrain(i)*Ytrain(j);
end
end
f = ones(mTrain(1,1),1)*(-1);
B = Ytrain;
b = 0;
lb = zeros(mTrain(1,1),1);
% 调用二次规划的函数
[x,fval,exitflag,output,lambda] = quadprog(H,f,[],[],B,b,lb);
% 定义C
C = max(x);
% 求解原问题
n = size(x);
k = 1;
for i = 1:n(1,1)
Kernel = zeros(n(1,1),1);
if x(i,1) > 0 && x(i,1)<C
for j = 1:n(1,1)
Kernel(j,:) = GaussianKernalFunction(Xtrain(j,:),Xtrain(i,:),sigma);
Kernel(j,:) = Kernel(j,:)*Ytrain(j);
end
b(k,1) = Ytrain(1,i)-x'*Kernel;
k = k +1;
end
end
b = mean(b);
%% 决策函数来验证训练准确性
trainOutput = zeros(mTrain(1,1),1);
for i = 1:mTrain(1,1)
Kernel_train = zeros(mTrain(1,1),1);
for j = 1:mTrain(1,1)
Kernel_train(j,:) = GaussianKernalFunction(Xtrain(j,:),Xtrain(i,:),sigma);
Kernel_train(j,:) = Kernel_train(j,:)*Ytrain(j);
end
trainOutput(i,1) = x'*Kernel_train+b;
end
for i = 1:mTrain(1,1)
if trainOutput(i,1)>0
trainOutput(i,1)=1;
elseif trainOutput(i,1)<0
trainOutput(i,1)=-1;
end
end
% 统计正确个数
countTrain = 0;
for i = 1:mTrain(1,1)
if trainOutput(i,1) == Ytrain(i)
countTrain = countTrain+1;
end
end
trainCorrect = countTrain./mTrain(1,1);
%% 决策函数来验证测试准确性
testOutput = zeros(mTest(1,1),1);
for i = 1:mTest(1,1)
Kernel_test = zeros(mTrain(1,1),1);
for j = 1:mTrain(1,1)
Kernel_test(j,:) = GaussianKernalFunction(Xtrain(j,:),Xtest(i,:),sigma);
Kernel_test(j,:) = Kernel_test(j,:)*Ytrain(j);
end
testOutput(i,1) = x'*Kernel_train+b;
end
for i = 1:mTest(1,1)
if testOutput(i,1)>0
testOutput(i,1)=1;
elseif testOutput(i,1)<0
testOutput(i,1)=-1;
end
end
% 统计正确个数
countTest = 0;
for i = 1:mTest(1,1)
if testOutput(i,1) == Ytest(i)
countTest = countTest+1;
end
end
testCorrect = countTest./mTest(1,1);
disp(['训练的准确性:',num2str(trainCorrect)]);
disp(['测试的准确性:',num2str(testCorrect)]);
核函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 高斯核函数,其中输入x和y都是行向量
function [ output ] = GaussianKernalFunction( x,y,sigma )
output = exp(-(x-y)*(x-y)'./(2*sigma^2));
end
最终的结果为:
注:在这个问题中,有两个参数需要调整,即核参数和惩罚参数,选取合适的参数对模型的训练起着很重要的作用。在程序中,我是指定的参数。这里的程序只是为帮助理解算法的过程。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27