京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一、回顾
介绍了支持向量机的基本概念,线性可分支持向量机的原理以及线性支持向量机的原理,线性可分支持向量机是线性支持向量机的基础。对于线性支持向量机,选择一个合适的惩罚参数,并构造凸二次规划问题:

求得原始问题的对偶问题的最优解,由此可求出原始问题的最优解:

其中
中满足的分量。这样便可以求得分离超平面
以及分类决策函数:
线性可分支持向量机算法是线性支持向量机算法的特殊情况。
二、非线性问题的处理方法
在处理非线性问题时,可以通过将分线性问题转化成线性问题,并通过已经构建的线性支持向量机来处理。如下图所示:

(非线性转成线性问题)
通过一种映射可以将输入空间转换到对应的特征空间,体现在特征空间中的是对应的线性问题。核技巧就可以完成这样的映射工作。
1、核函数的定义(摘自《统计机器学习》)
设是输入空间(欧式空间的子集或离散集合),又设为特征空间(希尔伯特空间),如果存在一个从到的映射
使得对所有
,函数
满足条件
则称
为核函数,为映射函数。
在实际的问题中,通常使用已有的核函数。
2、常用核函数
多项式核函数(Polynomial Kernel Function)
高斯核函数(Gaussian Kernel Function)

三、非线性支持向量机
1、选取适当的核函数和适当的参数,构造原始问题的对偶问题:

求得对应的最优解
。
2、选择
的一个满足的分量,求:
3、构造决策函数
四、实验仿真
对于非线性可分问题,其图像为:

(原始空间中的图像)
MATLAB代码
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 非线性支持向量机
% 清空内存
clear all;
clc;
% 导入测试数据
A = load('testSetRBF.txt');
%% 区分开训练数据与测试数据
m = size(A);%得到整个数据集的大小
trainA = A(11:m(1,1),:);
testA = A(1:10,:);
% 训练和测试数据集的大小
mTrain = size(trainA);
mTest = size(testA);
% 区分开特征与标签
Xtrain = trainA(:,1:2);
Ytrain = trainA(:,mTrain(1,2))';
Xtest = testA(:,1:2);
Ytest = testA(:,mTest(1,2))';
%% 对偶问题,用二次规划来求解,以求得训练模型
sigma = 0.5;%高斯核中的参数
H = zeros(mTrain(1,1),mTrain(1,1));
for i = 1:mTrain(1,1)
for j = 1:mTrain(1,1)
H(i,j) = GaussianKernalFunction(Xtrain(i,:),Xtrain(j,:),sigma);
H(i,j) = H(i,j)*Ytrain(i)*Ytrain(j);
end
end
f = ones(mTrain(1,1),1)*(-1);
B = Ytrain;
b = 0;
lb = zeros(mTrain(1,1),1);
% 调用二次规划的函数
[x,fval,exitflag,output,lambda] = quadprog(H,f,[],[],B,b,lb);
% 定义C
C = max(x);
% 求解原问题
n = size(x);
k = 1;
for i = 1:n(1,1)
Kernel = zeros(n(1,1),1);
if x(i,1) > 0 && x(i,1)<C
for j = 1:n(1,1)
Kernel(j,:) = GaussianKernalFunction(Xtrain(j,:),Xtrain(i,:),sigma);
Kernel(j,:) = Kernel(j,:)*Ytrain(j);
end
b(k,1) = Ytrain(1,i)-x'*Kernel;
k = k +1;
end
end
b = mean(b);
%% 决策函数来验证训练准确性
trainOutput = zeros(mTrain(1,1),1);
for i = 1:mTrain(1,1)
Kernel_train = zeros(mTrain(1,1),1);
for j = 1:mTrain(1,1)
Kernel_train(j,:) = GaussianKernalFunction(Xtrain(j,:),Xtrain(i,:),sigma);
Kernel_train(j,:) = Kernel_train(j,:)*Ytrain(j);
end
trainOutput(i,1) = x'*Kernel_train+b;
end
for i = 1:mTrain(1,1)
if trainOutput(i,1)>0
trainOutput(i,1)=1;
elseif trainOutput(i,1)<0
trainOutput(i,1)=-1;
end
end
% 统计正确个数
countTrain = 0;
for i = 1:mTrain(1,1)
if trainOutput(i,1) == Ytrain(i)
countTrain = countTrain+1;
end
end
trainCorrect = countTrain./mTrain(1,1);
%% 决策函数来验证测试准确性
testOutput = zeros(mTest(1,1),1);
for i = 1:mTest(1,1)
Kernel_test = zeros(mTrain(1,1),1);
for j = 1:mTrain(1,1)
Kernel_test(j,:) = GaussianKernalFunction(Xtrain(j,:),Xtest(i,:),sigma);
Kernel_test(j,:) = Kernel_test(j,:)*Ytrain(j);
end
testOutput(i,1) = x'*Kernel_train+b;
end
for i = 1:mTest(1,1)
if testOutput(i,1)>0
testOutput(i,1)=1;
elseif testOutput(i,1)<0
testOutput(i,1)=-1;
end
end
% 统计正确个数
countTest = 0;
for i = 1:mTest(1,1)
if testOutput(i,1) == Ytest(i)
countTest = countTest+1;
end
end
testCorrect = countTest./mTest(1,1);
disp(['训练的准确性:',num2str(trainCorrect)]);
disp(['测试的准确性:',num2str(testCorrect)]);
核函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 高斯核函数,其中输入x和y都是行向量
function [ output ] = GaussianKernalFunction( x,y,sigma )
output = exp(-(x-y)*(x-y)'./(2*sigma^2));
end
最终的结果为:
注:在这个问题中,有两个参数需要调整,即核参数和惩罚参数,选取合适的参数对模型的训练起着很重要的作用。在程序中,我是指定的参数。这里的程序只是为帮助理解算法的过程。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27