
五分钟读懂视频大数据分析
发展至今,大数据不再为互联网企业独有,而是逐渐成为覆盖各行业、可以为具体业务服务的技术。如今,春节不仅演化成了一年一度的“人口迁徙”大节,还成了交通、安保等领域接受技术检验的关键时刻,交通疏导以及火车站、汽车站、机场等场所的安全防范工作均是重中之重。人满则为患,视频大数据分析技术在其中承担了巨大的作用。
在复杂环境下对人、车、物的多重特征信息提取和事件检测,从而有效区分行人与干扰物体,这种精确的客流统计离不开智能摄像机监控。据悉,元宵节当天,南京夫子庙先后涌进近70万观灯市民,人流峰值曾达到了11.5万人。(数据来源于海康威视)
观灯会中使用的双目客流摄像机在双镜头立体成像的基础上,能够对游客的徘徊和身高进行过滤,并可以结合后端客流量统计分析系统,协助南京公安及时进行客流管控,一旦客流量统计分析系统检测出入口客流数据增长超出预期,指挥部马上通知该出入口的民警采取人员引导、限流和组织人墙措施,从而保证赏灯的有序性和安全性。
为什么摄像机能够自动过滤筛选信息呢?视频大数据分析需要经过三个层面的问题,一是目标检测和跟踪,二是目标识别, 三是行为识别。设想一下, 在一帧视频内容里,我们首先要把人从周围环境中分离出来(目标检测),然后分析出这个人是谁(目标识别),最后通过对其肢体动作分析,得到他在干什么(停留还是徘徊,或者其他行为)的结论,甚至推理出他将要干什么(行为理解)。
目标检测和跟踪(你在哪儿)
可见,这三个层次是依次递进的,目标检测是目标识别的基础,而行为识别是目标识别的高级阶段,这三个层次总体构成了摄像机智能过滤的功能。其中视频目标检测和跟踪具有很强的实用价值,主要应用在视频监控、智能交通、人机交互、机器人导航等领域。
以下是几种常用的动态视频目标检测方法:
背景减除:背景的建模是背景减除方法的技术关键,它一般能够提供相对来说比较全面的运动目标的特征数据,但对于动态场景的变化,如光线照射情况和外来无关事件的干扰等也特别敏感。
时间差分:又称相邻帧差方法,利用相邻帧图像的相减来提取出前景移动目标的信息,对于动态环境具有较强的自适应性,但一般不能完全提取出所有相关的特征像素点,在运动实体内部容易产生空洞现象,只能够检测到目标的边缘,当运动目标停止运动时,一般时间差分方法便失效。
光流:基于光流方法的运动检测采用了运动目标随时间变化的光流特性,该方法的优点是在所摄场所运动存在的前提下也能检测出独立的运动目标。大多数的光流计算方法相当复杂,且抗噪性能差,如果没有特别的硬件装置则不能被应用于全帧视频流的实时处理。
目标识别(你是谁)
目标识别主要是判断视频的内容是什么,如通过人脸识别技术达到判定目的。目标识别的过程是将待识别的目标与指定的目标库中的特征进行比较,以确定是否与该库中的某一目标相匹配。其方法主要有:几何特征法、神经网络法、隐马尔可夫模型法、利用人脸侧面像的轮廓进行识别等。
目前,该技术的难度在于光照条件的改变、 角度的不同、 遮挡,人脸识别技术中还包括人脸表情的变化、年龄增长等带来的变化。
行为识别(你在干什么)
行为识别即是行为理解,它对数据分析结果的应用极其重要,因为其回答了目标“将要干什么”的问题,可以基于理解的结果进行预判。例如,在各种光照变化、人群遮挡等复杂环境下,相关机构可以通过视频数据分析估计人群数量和密度,同时检测人群过密、异常聚集、滞留、逆行、混乱等多种异常现象,实现重大活动、重要区域的人流统计与控制,并提供实时报警功能。
深度学习(模仿人脑机制解释数据)
在视频大数据分析的三个层次中,目前研究热点主要集中在目标识别和行为理解两大领域。学术界和产业界最终的目的是让计算机具备人类眼睛和大脑的功能,“看到”并“领会”到图像和视频上的信息。在具体技术手段上,业内往往采用计算机视觉技术,特别是以深度学习为基础的计算机视觉技术近年来在视频分析中得到广泛应用。
计算机视觉技术指的是依靠算法,在没有其他辅助信息的前提下,仅根据图片像素信息分析出图像的语义,一般分为图像获取、预处理、特征提取、检测/分区和高级处理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11