
五分钟读懂视频大数据分析
发展至今,大数据不再为互联网企业独有,而是逐渐成为覆盖各行业、可以为具体业务服务的技术。如今,春节不仅演化成了一年一度的“人口迁徙”大节,还成了交通、安保等领域接受技术检验的关键时刻,交通疏导以及火车站、汽车站、机场等场所的安全防范工作均是重中之重。人满则为患,视频大数据分析技术在其中承担了巨大的作用。
在复杂环境下对人、车、物的多重特征信息提取和事件检测,从而有效区分行人与干扰物体,这种精确的客流统计离不开智能摄像机监控。据悉,元宵节当天,南京夫子庙先后涌进近70万观灯市民,人流峰值曾达到了11.5万人。(数据来源于海康威视)
观灯会中使用的双目客流摄像机在双镜头立体成像的基础上,能够对游客的徘徊和身高进行过滤,并可以结合后端客流量统计分析系统,协助南京公安及时进行客流管控,一旦客流量统计分析系统检测出入口客流数据增长超出预期,指挥部马上通知该出入口的民警采取人员引导、限流和组织人墙措施,从而保证赏灯的有序性和安全性。
为什么摄像机能够自动过滤筛选信息呢?视频大数据分析需要经过三个层面的问题,一是目标检测和跟踪,二是目标识别, 三是行为识别。设想一下, 在一帧视频内容里,我们首先要把人从周围环境中分离出来(目标检测),然后分析出这个人是谁(目标识别),最后通过对其肢体动作分析,得到他在干什么(停留还是徘徊,或者其他行为)的结论,甚至推理出他将要干什么(行为理解)。
目标检测和跟踪(你在哪儿)
可见,这三个层次是依次递进的,目标检测是目标识别的基础,而行为识别是目标识别的高级阶段,这三个层次总体构成了摄像机智能过滤的功能。其中视频目标检测和跟踪具有很强的实用价值,主要应用在视频监控、智能交通、人机交互、机器人导航等领域。
以下是几种常用的动态视频目标检测方法:
背景减除:背景的建模是背景减除方法的技术关键,它一般能够提供相对来说比较全面的运动目标的特征数据,但对于动态场景的变化,如光线照射情况和外来无关事件的干扰等也特别敏感。
时间差分:又称相邻帧差方法,利用相邻帧图像的相减来提取出前景移动目标的信息,对于动态环境具有较强的自适应性,但一般不能完全提取出所有相关的特征像素点,在运动实体内部容易产生空洞现象,只能够检测到目标的边缘,当运动目标停止运动时,一般时间差分方法便失效。
光流:基于光流方法的运动检测采用了运动目标随时间变化的光流特性,该方法的优点是在所摄场所运动存在的前提下也能检测出独立的运动目标。大多数的光流计算方法相当复杂,且抗噪性能差,如果没有特别的硬件装置则不能被应用于全帧视频流的实时处理。
目标识别(你是谁)
目标识别主要是判断视频的内容是什么,如通过人脸识别技术达到判定目的。目标识别的过程是将待识别的目标与指定的目标库中的特征进行比较,以确定是否与该库中的某一目标相匹配。其方法主要有:几何特征法、神经网络法、隐马尔可夫模型法、利用人脸侧面像的轮廓进行识别等。
目前,该技术的难度在于光照条件的改变、 角度的不同、 遮挡,人脸识别技术中还包括人脸表情的变化、年龄增长等带来的变化。
行为识别(你在干什么)
行为识别即是行为理解,它对数据分析结果的应用极其重要,因为其回答了目标“将要干什么”的问题,可以基于理解的结果进行预判。例如,在各种光照变化、人群遮挡等复杂环境下,相关机构可以通过视频数据分析估计人群数量和密度,同时检测人群过密、异常聚集、滞留、逆行、混乱等多种异常现象,实现重大活动、重要区域的人流统计与控制,并提供实时报警功能。
深度学习(模仿人脑机制解释数据)
在视频大数据分析的三个层次中,目前研究热点主要集中在目标识别和行为理解两大领域。学术界和产业界最终的目的是让计算机具备人类眼睛和大脑的功能,“看到”并“领会”到图像和视频上的信息。在具体技术手段上,业内往往采用计算机视觉技术,特别是以深度学习为基础的计算机视觉技术近年来在视频分析中得到广泛应用。
计算机视觉技术指的是依靠算法,在没有其他辅助信息的前提下,仅根据图片像素信息分析出图像的语义,一般分为图像获取、预处理、特征提取、检测/分区和高级处理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10