京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习中的Accuracy,Precision,Recall和F1-Score
在模式识别和信息检索领域,二分类的问题(binary classification)是常会遇到的一类问题。例如,银行的信用卡中心每天都会收到很多的信用卡申请,银行必须根据客户的一些资料来预测这个客户是否有较高的违约风险,并据此判断是否要核发信用卡给该名客户。显然“是否会违约”就是一个二分类的问题。
如果你已经根据训练数据建立了一个模型,接下来你会用一些测试数据来评估你模型的效果,即 Evaluate model on held-out(留存) test data。通常你可能会考虑的评估指标主要有
Accuracy
Precision
Recall
F1 Score
但是这些指标常常令人混淆不清,下面我们逐个介绍并加以辨析。作为一个例子,来看表中这组分类结果
1、Accuracy
2、Precision
尽管 Accuracy 和 Precision 都可以翻译成“准确率”,但是二者含义并不相同。Precision 又称为 Positive predictive value,对于一个机器学习模型而言,假设有下图所示的预测结果:
那么,Precision = TP/(TP+FP),如果我们将B视作Positive class,那么Precision就是
“被预测成B且正确的/(被预测成B且正确的+被预测成B但错误的),即有
如果现在讨论的是一个信息检索问题,那么Precision,通常可译为“查准率”,(假设我们的目标是检索B)就是指:检索到的正确的信息(或文档)数(正确就是指与B相关)/ {检索到的正确的信息数(IR认为与B相关且确实相关) + 检索到的错误的信息数(IR认为与B相关但并不相关)}
3、Recall
Recall (常常译为”召回率“)是与 Precision 相对应的另外一个广泛用于信息检索和统计学分类领域的度量值,用来评价结果的质量。
Recall = TP/(TP + FN),同样如果我们将B视作Positive class,那么 Recall 就是
“被预测成B且正确的/(被预测成B且正确的+被预测成A但错误的(其实本来是B的)),即有
如果现在讨论的是一个信息检索问题,那么Recall通常可译为“查全率”,(假设我们的目标是检索B)就是指:检索到的正确的信息(或文档)数(正确就是指与B相关)/ {检索到的正确的信息数(IR认为与B相关且确实相关) + 没有检索到的但却相关的信息数(本来与B相关但IR认为并不相关所以未检索到的)},即检索出的相关文档数和文档库中所有的相关文档数的比率。
显然, Precision 和 Recall 两者取值在0和1之间,数值越接近1,查准率或查全率就越高。
4、F1 Score
F1 score (或称 F-score 或 F-measure) ,是一个兼顾考虑了Precision 和 Recall 的评估指标。通常, F-measure 就是指 Precision 和 Recall 的调和平均数(Harmonic mean),即数据分析师培训
更广泛的,对于一个实数β,还可以定义
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27