京公网安备 11010802034615号
经营许可证编号:京B2-20210330
最大期望算法(EM)
K均值算法非常简单,相信读者都可以轻松地理解它。但下面将要介绍的EM算法就要困难许多了,它与极大似然估计密切相关。
1 算法原理
不妨从一个例子开始我们的讨论,假设现在有100个人的身高数据,而且这100条数据是随机抽取的。一个常识性的看法是,男性身高满足一定的分布(例如正态分布),女性身高也满足一定的分布,但这两个分布的参数不同。我们现在不仅不知道男女身高分布的参数,甚至不知道这100条数据哪些是来自男性,哪些是来自女性。这正符合聚类问题的假设,除了数据本身以外,并不知道其他任何信息。而我们的目的正是推断每个数据应该属于哪个分类。所以对于每个样本,都有两个需要被估计的项,一个就是它到底是来自男性身高的分布,还是来自女性身高的分布。另外一个就是,男女身高分布的参数各是多少。
既然我们要估计知道A和B两组参数,在开始状态下二者都是未知的,但如果知道了A的信息就可以得到B的信息,反过来知道了B也就得到了A。所以可能想到的一种方法就是考虑首先赋予A某种初值,以此得到B的估计,然后从B的当前值出发,重新估计A的取值,这个过程一直持续到收敛为止。你是否隐约想到了什么?是的,这恰恰是K均值算法的本质,所以说K均值算法中其实蕴含了EM算法的本质。
EM算法,又称期望最大化(Expectation Maximization)算法。在男女身高的问题里面,可以先随便猜一下男生身高的正态分布参数:比如可以假设男生身高的均值是1.7米,方差是0.1米。当然,这仅仅是我们的一个猜测,最开始肯定不会太准确。但基于这个猜测,便可计算出每个人更可能属于男性分布还是属于女性分布。例如有个人的身高是1.75米,显然它更可能属于男性身高这个分布。据此,我们为每条数据都划定了一个归属。接下来就可以根据最大似然法,通过这些被大概认为是男性的若干条数据来重新估计男性身高正态分布的参数,女性的那个分布同样方法重新估计。然后,当更新了这两个分布的时候,每一个属于这两个分布的概率又发生了改变,那么就再需要调整参数。如此迭代,直到参数基本不再发生变化为止。数据分析师培训
在正式介绍EM算法的原理和执行过程之前,此处首先对边缘分布的概念稍作补充。
2. 收敛探讨
在下一篇中我们将讨论高斯混合模型(GMM),相当于是EM的一种实现。并给出在R中进行数据挖掘的实例。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24