京公网安备 11010802034615号
经营许可证编号:京B2-20210330
智慧城市大数据市场亟待挖掘
目前,全国所有的地级以上市和400多个县级市都已经开展了数字城市的建设,从数字城市到智慧城市建设,差别主要在于大数据等新技术的应用。“在智慧城市建设中,大数据服务有待进一步挖掘。”国家测绘地理信息局副局长李维森介绍,国家地理信息局正在统筹以城市地理空间信息为基础的数据库,加快智慧城市公共信息平台和应用体系建设,可以将教育、医疗、就业、旅游等数据资源向社会开放,鼓励发展以信息数据加工和创新为主的大数据挖掘等新型服务,创新大数据商业模式,未来的智慧城市必定更加“有智慧”。
日前,市场研究机构易观智库发布了《中国城市大数据市场专题分析》报告,报告称2016年我国城市大数据市场规模达132.8亿元,同比增长45.9%,到2017年有望增至189.4亿元。
报告认为,城市大数据是城市信息化的产物,是城市智慧化的主引擎之一。城市大数据有两个基本要素,一是城市数据,即数据来源于城市运转与管理的各个环节,而非政府等部门的办公业务。二是围绕与城市运营相关业务的大数据,以技术手段实现城市运营水平的升级。从广义上看,城市大数据还包括大数据在城市治理运用中所产生的新思维模式和新商业模式。
五大应用类型
城市大数据应用,不同于其他行业和领域的大数据应用模式,具有鲜明的“城市化”特征,其服务范围和内容大体包括五个方面。
一、城市人口大数据。指的是通过广泛收集与个人有关的数据,包括基本信息、地理位置信息、交易信息、行动轨迹与交通方式等,精准勾画人群的动态分布、流动轨迹等。城市热力地图涵盖人群特征、出行方式与交通工具选择特性、时间特性、区域特性等,并通过大数据分析其中的重要规律,用于指导城市建设规划与布局、交通治堵与疏导、公共资源精准布局、城市应急以及一些可能的商业应用。
二、关注环境和资源的城市大数据。这一应用重点聚焦城市人群和环境之间的关系,分析因为城市人口的大规模和高密度给环境污染带来的影响及给城市资源消耗(水、电、燃气、燃油等)带来的压力。基于城市资源承载力的大数据分析,评估城市的持续发展潜力,寻求人口和城市环境影响与资源消耗之间的平衡。
三、关注交通的城市大数据。该领域的应用与城市智慧交通有较高的重叠度,大数据应用于城市交通,有望缓解普遍存在的城市交通拥堵问题。
四、结合公共交通和城市管理的城市运行大数据。该领域的应用关注城市运行的健康度。比如公共交通出行指数、资源利用率指数、城市部件健康度指数等,从而引导城市的健康运转。
五、城市软环境大数据应用。主要涉及城市社交、娱乐、文化等层面。通过大数据分析,呈现和引导城市人群的兴趣与消费、文化娱乐等。
商业模式亟待完善
报告认为,在城市大数据生态圈的构建中,平台建设和数据运营两方面缺一不可。如果城市大数据只考虑平台建设,而没有构建良性的运营体系,那么应用层面将会出现断层。
如何构建可持续运营的城市大数据商业模式成为业界探索的重要方向。城市大数据的核心是以大数据思维进行城市运营。一方面,服务商需要采集并加工大数据,通过政府将数据面向运营企业开放,基于这些数据开发更多的创新应用,支撑政府开展经济运行、城市体征、市场决策等城市管理工作;另一方面,通过大数据运营,政府可以为居民提供主动式的互联网服务,包括医疗、养老、教育等,这将催生一个巨大的市场。
目前,城市大数据商业模式还在不断演进、成熟的过程中。城市大数据是否能够更好地促进城市运营发展,取决于其业务价值。虽然城市大数据的获取很重要,但是掌控了数据并非意味着掌控了未来的入口。因此,城市大数据要真正发挥价值,就需要有清晰的商业模式。
报告同时认为,从长期看,城市基础数据应该成为城市大数据的主流,而除了实体智能设备采集的数据外,虚拟数据也将成为城市大数据的重要一环,人工智能也将成为城市大数据的放大器。未来城市大数据将随着数字城市、人类城市、物理城市三个方面深度融合,拥有越来越深厚的内涵。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29