
大数据时代如何衡量HR的价值
如果说“大数据”是这两年最热的词之一,应该没人反对吧?大数据对于人力资源的选育用留是带来极大的便利同时也给人力资源工作带来了非常大的挑战。特别对于人力资源工作本身来说,如何通过数据对工作效果进行衡量也一直是业界争论的焦点。
那么,HR的价值到底该如何衡量呢?
一、HR的四大类数据
1反映人力资源现状的事实数据
例如人员数量与结构、学历、年龄等,可以展示一定时间段内组织内部人力资源的基本概况。这类数据收集起来比较容易,分析起来也比较简单。一般来讲,每月提供此类人力资源数据报表,并与不同时期的数据进行对比,可以让决策者对人力资源现状有一个概览式的认知。
2反映人力资源活力的动态数据
例如招聘周期、招聘完成率、员工流动率、核心员工流失率、内部流动率等。动态数据可以反映一定时间段内组织的活力状况。较短的招聘周期、较高的招聘完成率可以反映组织“入口”的健康状况。而合理的员工流动率、较低的核心员工流失率可以反映组织“出口”的健康状况。内部流动率,如员工换岗、员工晋升或接班人计划等,可以反映出组织内在的活力。
动态数据的收集也比较容易,关键是组织要沉淀数据,并及时了解市场行情,通过内部及外部的对比分析,才能对组织人力资源的活力有客观的评价。比如分析发现一段时间内某个岗位的招聘周期变长了,HR及用人部门就要坐下来分析。是市场供给减少了,还是市场竞争激烈了,还是人才定位出现偏差或其他原因,之后才能找到对策。这类监控数据,就像反映组织健康状况的晴雨表,随时可以给管理者预警。
3反映人力资源质量的分析数据
例如人均效率、人力资本投资回报率、员工满意度、员工敬业度等。分析数据,可以深入了解组织的效率,反映人力资源对业绩的作用,也是影响人力资源及公司战略决策的重要参考。这类数据的收集与分析需要模型支撑,需要花费一番功夫。同时,这类数据的分析也最富创造性,对组织业务的影响最有参考价值。比如分析发现,员工满意度越高,客户忠诚度也越高。这就引导管理者将资源重点放在员工满意度上,采取一系列措施去提高员工满意度。一旦员工满意度有所下降,管理者就要检讨和反省背后的原因,并拿出应对措施。再比如分析发现人均效率下降了,通过人员预测模型发现公司的人员是多了而不是少了。此时公司的人员战略目标或许需要由“增员”转向“减员增效”。
人均效率、人力资本投资回报率有标准的公式,需要HR与财务配合,共同完成。员工满意度、员工敬业度等也有一些成型的理论和模型,比如盖洛普Q12等。关键是选择那些经过时间和众多组织检验过的模型,并坚持在组织内推行下去。有历史数据的沉淀,才有对比分析的意义。
4反映组织效率的分析数据
一个企业的管理是否有效率、组织结构设计得是否合理、是否有优化的机会等等,也可以通过一些数据发现,比如,公司管理人员的平均管理幅度,也就是平均一位经理直接管理几位员工,通过这个可以从一个角度反映管理效率; 再比如,公司从总裁到普通员工有几个层级,层级越多,组织的沟通效率越差; 再比如,也可以分析前线销售或者生产的员工与后台管理人员的比例,可以分析一下,公司的管理有多“重”; 再比如,也可以针对某一职能,进行跨企业的分析,平均一位人力资源从业者支持多少位员工,这个就可以反应这个职能的管理效率。当然,不同企业由于业务、管理模式的不同,无法做出一个绝对的好或者不好的判断,但,可以以某一个时间点为基础,持续跟进与分析这些数据的变化,判断是否有持续性的改善?
二、如何着手数据分析
集中力量优先解决重点问题 HR管理模块众多,从战略规划到招聘、培训、绩效、薪酬、员工关系、企业文化等等,可能处处有问题,能进行分析的地方也很多。但资源有限,要使人力资源分析的作用发挥到最大,应集中力量优先解决重点问题。何为重点问题?公司战略需要的指导性或支持性分析是重点,目前最影响业绩的问题也是重点。
1要有业务导向
人力资源数据分析不能孤芳自赏,必须服务于业务才能发挥真正的作用。同时,从事数据分析的人员也需要有销售、财务的敏感性和基本的知识,这样才能将HR与业务更紧密地联系起来。
2从已有资源开始
HR部门手上有很多现成的数据,从这些数据入手,先一点点地做起来。数据本身是没有意义的,关键在于如何将数据与业绩关联起来。这确实需要创造性,并投入精力。基本的统计方法也是需要掌握的。
3坚持下去,要有沉淀
一旦决定要做分析工作,就要将它融入HR日常的业务工作中去,并安排专人负责日常数据的收集与整理。并且这个工作一定要有持久性,任何一个时间断面上的数据都难以单独进行有效的分析。组织内部历史数据的沉淀在评估和预测方面能发挥更大的作用。
4打破常规,不断创新
例如,谷歌通过研究发现,好的管理与人才保留率和团队绩效之间是正相关的关系。他们借鉴心理学方法进行双盲面试测试,识别出最好的经理表现出哪些关键行为。结果发现,好的经理身上存在8种行为以及5个需要规避的陷阱。他们将这些发现纳入经理培训计划和辅导教程,并给经理提供针对性的反馈,取得了很好的效果。类似这样的创新性研究将有效提升HR管理的专业水平,从而为组织创造更大的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03