
大数据时代的特征和思维
随着信息技术的发展和应用, 人类进入了一个大数据时代。大数据时代和我们以前的时代有什么不同? 什么又是大数据时代的特征,和应具备的思维呢? 维克多·舍恩伯格在《大数据时代》一书中将大数据时代人类的思维革命总结成三个:不是随机样本,而是所有数据;不是精确性,而是混杂性;不是因果关系,而是相关关系。基于我个人的观察和思考, 我认为大数据时代有三大特征和需具备的思维。 它们分别是:万物皆数化特征与量化互联思维,数据价值化特征与价值思维,世界智能化特征与智慧思维。
万物皆数化特征与量化互联思维
“万物皆数”是毕达格拉斯学派2000多前的一句名言。在过去的2000多年里,人们尝试用数字来量化客观世界,并以此为基础探索并认知世界。 随着上世纪计算机的出现和随后信息化迅猛的发展, 尤其是互联网、移动互联网、物联网的深度普及和广泛应用,我们似乎真正进入了一个“万物皆数化” 的时代:从宏观到微观,从客观到主观,从具象到抽象,一切活动和动力,直接或间接,都在被全面、实时地记录,成为数字化的信息,“万物皆数化”成为大数据时代的第一个显著特征。
“要么数字化,要么死亡。”(孙正义前不久对日本企业界说) 数字信息已经成为时代发展的趋势和代表。数化特征带来的第一个思维就是量化思维,“量化”就是用一种共性的语言来描述,标识和解释世界。因此,需要充分应用最新的技术手段,对全领域、全过程的各种信息进行定量采集、定量分析挖掘、定量描述;共性的量化使得各种信息之间的互通成为可能,打通物与物之间、物与人之间、人与人之间、人与活动之间,活动与活动之间全领域、全过程的信息,协同并整合所有片段信息,形成多维的完整的数据链,这就是“互联思维”。在量化和互联的基础上,建立实用的分析方法和数据科学,才能更好实现有价值的数据应用。
数据价值化特征与价值思维
大数据时代第二个特征“数据价值化”。数据创造价值并非这几年才开始。从上世纪50年代开始的信用卡评分、到数据挖掘领域最经典的啤酒和尿布的故事,都曾经是企业利用数据创造价值的典型应用案例。在大数据时代,由于万物的量化及互联,数据已渗透到不同行业的各个维度,其多维性和完整性左右并影响了各维度的发展和决策,数据的重要性由此凸显,这就是数据的价值化特征。麦肯锡全球研究报告指出,“数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素,人们对于海量数据的运用将预示着新一波生产率增长浪潮的到来。”基于数据价值化的特征,价值思维的运营被广泛应用。同时,数据的价值在大数据时代已然超越了提升生产效率的基础定位,上升成为战略资产、生产资料以及合作资源, 甚至成为国家竞争力的构成要素。在过去几年,很多企业都提供免费服务,尤其是互联网企业,它们的商业模式正是基于数据价值的思维,数据就是价值。但是随着数据的越来越普及,获取数据的渠道日益增多,数据的价值不仅仅只体现在数据的获取上,更体现在数据的深度认知,解析和运营上。数据价值的呈现将基于更多创造性的方式。
世界智能化特征与智慧(社会)思维
基于上述的特征,人类对各种物体以及现象的认知越来越深入,(包括人类自身的需要),基于大数据的各种应用出现了智能化的特征。从智能搜索,智能推荐营销,到各种智能服务如自动导航,自动驾驶,智能家居等大量应用,将使得基于数据的智能不断进化。智慧城市的推动,也是希望利用大数据对民生、环保、公共安全、城市服务、工商业活动等各种需求做出智能响应。我们相信,各种智能机器人也将在不久的将来大量出现,在各领域服务于人类。世界智能化将是大数据时代的第三个特征。
大数据的广泛应用在产生积极影响的同时,也产生了问题,如:隐私权、数据安全,数据所有权等。基于大数据不断发展的智能机器人也给世界带来不确定性,如何处理人和机器人之间的关系将是未来一个重要的命题。这些问题和不确定性,需要个人,企业和国家对大数据的应用有很好的意愿,规则,协同,利他共赢的智慧。智慧(社会)思维,是应用大数据在更好的服务人类的过程中,必须具备的一种社会思维。
简而言之,在大数据时代,智能和智慧化是目标和愿景, 价值化是手段, 数字化是基础。 而“大数据”实际上是一种思维和方法:它是一种基于数据量化和互联,通过数据分析,挖掘,应用, 以达到整个世界高度智能化甚至智慧化的思维和方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28