京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS中两种重复测量资料分析过程的比较
在SPSS中,有两个过程可以对重复测量资料进行分析:一种是一般线性模型的重复度量;一种是混合线性模型,对于同样的数据资料,使用两种过程分析出的内容不大一样,注意是内容而不是结果,只要操作正确,结果应该是一致的,而输出内容的差异则反映了两种方法的侧重点不同,那么两种方法有何异同以及使用时该如何选择呢?可以从下几个方面进行探讨
一、基本思路不同
重复度量:重复度量的分析思路还是是基于传统的方差分析思想,即变异分解,只不过在分解时加入了对象间变异和对象间与时间交互作用的变异两部分,模型还是一般线性模型的范畴,这点从结果输出日志的标题中也可以看出,但是在SPSS操作中,并不需要选入因变量。
混合线性模型:混合线性模型是一般线性模型的推广,是专门用来解决因变量非独立的数据,也就是层次聚集性数据。而重复测量资料就是属于此类数据,因此混合线性模型对重复测量资料的数据分析是从纯粹的模型求解的角度出发,而不是变异分解,在SPSS操作中需要选入因变量。
二、结果中某些算法不同
实际上二者的算法并非完全不同,毕竟独属于多元分析,还是有类似的地方。
重复度量:从分析结果中可以看出,重复度量结果既包含一元分析也包含多元分析,并且以Mauchly球形度检验作为选择标准,实际上球形度检验就是将重复测量资料看做是配对t检验的推广,通过检验两两时间点之间差值的方差协方差矩阵来判断该资料因变量之间是否真的存在相关性。其多元分析结果部分,和多元方差一样使用了四种检验方法,都是基于矩阵计算的。在参数估计上,和一般线性模型一样,使用的是对比矩阵,以某一水平为参照,其余水平和其进行对比进行计算
混合线性模型:无论是参数估计还是其他结果的计算,都使用了更加稳健的多元分析方法,如极大似然法、迭代法、熵等
三、应用范围不同
重复度量:主要用来分析因素效应和交互作用对实验结果的影响,因素效应和交互作用是否存在时间趋势,以及进一步分析各因素水平间的两两比较等,在SPSS操作中并不涉及因变量,只是分析因素之间的关系,离不开一般线性模型的分析范畴,并且在重复度量中也没有办法加入随机因素
混合线性模型:既然是一般线性模型的推广,那么其应用范围肯定比一般线性模型要广,除了可以对层次聚集性数据进行分析之外,还可以加入随机效应,建立回归模型,并且可以指定协方差矩阵的类型,还可以对嵌套实验设计进行分析。可以说,重复度量能做的分析,混合线性模型都能做,而反过来则未必。
四、数据输入的格式不同
重复度量:由于重复度量是以方差分析为基础,将每次测量时间作为一种单独的因素看待(对象内变异因素),数据输入格式中,每次测量时间单独为一列变量,测量数据就输入在每次测量的时间下面,数据格式如下
混合线性模型:将时间总的作为一种因素(变量),各个时间点为不同的水平,数据格式为标准的多水平模型,测量数据也单独为一个变量,与相应的测量时间对应,在分析时,测量数据一般作为因变量,时间作为协变量,具体数据格式如下
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12