
SPSS中两种重复测量资料分析过程的比较
在SPSS中,有两个过程可以对重复测量资料进行分析:一种是一般线性模型的重复度量;一种是混合线性模型,对于同样的数据资料,使用两种过程分析出的内容不大一样,注意是内容而不是结果,只要操作正确,结果应该是一致的,而输出内容的差异则反映了两种方法的侧重点不同,那么两种方法有何异同以及使用时该如何选择呢?可以从下几个方面进行探讨
一、基本思路不同
重复度量:重复度量的分析思路还是是基于传统的方差分析思想,即变异分解,只不过在分解时加入了对象间变异和对象间与时间交互作用的变异两部分,模型还是一般线性模型的范畴,这点从结果输出日志的标题中也可以看出,但是在SPSS操作中,并不需要选入因变量。
混合线性模型:混合线性模型是一般线性模型的推广,是专门用来解决因变量非独立的数据,也就是层次聚集性数据。而重复测量资料就是属于此类数据,因此混合线性模型对重复测量资料的数据分析是从纯粹的模型求解的角度出发,而不是变异分解,在SPSS操作中需要选入因变量。
二、结果中某些算法不同
实际上二者的算法并非完全不同,毕竟独属于多元分析,还是有类似的地方。
重复度量:从分析结果中可以看出,重复度量结果既包含一元分析也包含多元分析,并且以Mauchly球形度检验作为选择标准,实际上球形度检验就是将重复测量资料看做是配对t检验的推广,通过检验两两时间点之间差值的方差协方差矩阵来判断该资料因变量之间是否真的存在相关性。其多元分析结果部分,和多元方差一样使用了四种检验方法,都是基于矩阵计算的。在参数估计上,和一般线性模型一样,使用的是对比矩阵,以某一水平为参照,其余水平和其进行对比进行计算
混合线性模型:无论是参数估计还是其他结果的计算,都使用了更加稳健的多元分析方法,如极大似然法、迭代法、熵等
三、应用范围不同
重复度量:主要用来分析因素效应和交互作用对实验结果的影响,因素效应和交互作用是否存在时间趋势,以及进一步分析各因素水平间的两两比较等,在SPSS操作中并不涉及因变量,只是分析因素之间的关系,离不开一般线性模型的分析范畴,并且在重复度量中也没有办法加入随机因素
混合线性模型:既然是一般线性模型的推广,那么其应用范围肯定比一般线性模型要广,除了可以对层次聚集性数据进行分析之外,还可以加入随机效应,建立回归模型,并且可以指定协方差矩阵的类型,还可以对嵌套实验设计进行分析。可以说,重复度量能做的分析,混合线性模型都能做,而反过来则未必。
四、数据输入的格式不同
重复度量:由于重复度量是以方差分析为基础,将每次测量时间作为一种单独的因素看待(对象内变异因素),数据输入格式中,每次测量时间单独为一列变量,测量数据就输入在每次测量的时间下面,数据格式如下
混合线性模型:将时间总的作为一种因素(变量),各个时间点为不同的水平,数据格式为标准的多水平模型,测量数据也单独为一个变量,与相应的测量时间对应,在分析时,测量数据一般作为因变量,时间作为协变量,具体数据格式如下
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24