
在大数据时代,这个交易才刚刚开始
对于传统的贸易业务而言,在一个互联网平台上完成了一笔交易,这个交易就结束了,但是在大数据时代,这个交易才刚刚开始。
中国加入WTO已经整整15周年了。15年来,中国享受了全球贸易增长带来的红利,外贸迅猛增长拉动了经济增长,中国也成为了全球第二大经济体。
但是,这个15周年的日子却并不特别值得庆贺,因为全球化正在遭受前所未有的挑战,从2016年6月份的英国脱欧,到特朗普当选美国总统,贸易保护主义和逆全球化的思潮比过去15年任何时候都更加强烈。
按照加入WTO时的协议,中国在15年之后会自动成为市场经济国家,在确定补贴和认定倾销的基准价格时,将不再需要以替代国的价格来计算。但是这个本来自动实现的目标,也正变得更加扑朔迷离,欧盟试图通过新立法,以“市场扭曲”规则取代“市场经济”标准。
贸易保护主义和贸易寒冬双重来袭,全球贸易形势遭到了严峻挑战。中国自然也难置身事外,出口从高速增长到连年大幅负增长。在如此艰难的环境下,推动外贸的增长需要有新思维。
从传统的广交会的现场交易模式,到网络时代的网络集市,现在外贸已经进化了第三个阶段——大数据时代。
---
何为大数据时代?
对于许多普通用户来说,只要有与贸易相关的业务通过互联网处理,便认为自己进入了一个新时代。但这恰恰是对互联网模式最大的误解。
互联网的出现,作为一个信息传输工具,无论是过去的BBS论坛,还是语音聊天,互联网只是提供了一个管道,一个工具,就好比过去通过电话线传输的语音,而今通过光钎传送。管道变了,传输容量扩大了,但是对于用户而言,效率提升感受不明显。互联网在传统时代仅仅是一个被机械利用的一种技术、一个工具。
贸易领域的传统互联网时代也是如此。一度,无论是国内的贸易,还是跨境贸易,各类网站如雨后春笋般成长,他们以为,只要“触网”了就“现代”了,并以此为噱头来吆喝。但是,如果不能给用户带来便利、解决用户的痛点,“触网”带来的可能不是效率的提高,而是痛苦,因为程序可能更加繁琐,效率提高却不大。
互联网的本质只有到了大数据时代才得到了真正的体现,互联网是活的、是智能的。通过大数据的应用,互联网真正灵活地嵌入到贸易的各个环节,塑造贸易的新时代。
对于传统的贸易业务而言,在一个互联网平台上完成了一笔交易,这个交易就结束了,但是在大数据时代,这个交易才刚刚开始。因为数据留存开始下一笔业务做得更好的开始,数据留存得越多,平台对用户需求的智能识别就越精准,未来的交易就越便利。
举一个并不十分恰当的例子,如果你通过今日头条阅读新闻,当你关闭一个阅读页面时,恰恰就是一个新的开始,平台对你喜好判断更加精准。你点击了什么、阅读了多长时间都将会被记录,而下一次进入,平台就会自动推荐你所喜好的内容。机器在记录人的行为,进行深度学习,进而判断出用户下一步的需求。
对于外贸而言,数据积累可发挥的作用远不止推荐那么简单,他贯穿于贸易的全过程,从寻找买方或卖方,到信用担保、物流、汇兑、海关流程,数据在上一个环节的积累,可以帮助解决下一个环节的问题,而累积的数据可以更好地自动识别用户的信用,从而提供更为便捷的各类服务。
数据积累的过程首先是用户对机构的赋能,第二步则机构反馈给用户,提升用户的效率。这是一个相互长进的过程。
显然,大机构往往具有先天的优势,因为其了解更多用户的普遍习惯,进而能更好地通过大数据识别用户的需求,以免费或更为低廉的成本,为用户提供更高效的服务。
---
如何降低交易成本?
阿里巴巴的一达通则是大数据赋能的典型案例,其根本的特点并不在于提供贸易平台,而在于其全程参与外贸的各个环节体系,掌握了大量真实有效的数据,这使数据的运用使得传统外贸走向新外贸成为可能。
正如上图所示,一达通对数据的积累是全链条的,体现在贸易的各个环节。而在其中的许多环节,通过大数据的使用,已经大大降低了用户的交易成本,解决的外贸企业的诸多痛点。
虽然许多长期从事外贸的企业一般已经有了稳定的客户,但是通过一达通可以精准地匹配数据,为企业推荐新的客户。而对新加入外贸行业的人士而言,通过大数据就可以直接开拓市场,相比于参与各类交易会,成本要低许多。这只是在信息精准匹配一个环节的使用。
目前,大数据运用最核心的领域是金融服务,通过大数据可以对用户的信用进行综合评价,进而提供更为个性化、低成本、快捷的金融服务。比如,在资金周转上,一般而言,货物收到才支付全部的货款,但是基于大数据分析卖方的行为,可以评估在其发货之后货物收不到的概率很低,是小概率事件,那么金融机构就可以为买方提前支付货款,并承担小概率事件的风险,这可能加速卖方的资金回笼速度,提升经营效率。
同样的道理可以用在新外贸的各个环节,因为数据的分析可以建立信用评估体系,可以识别对一笔贸易而言,什么是大概率的风险,什么是小概率的风险,对于大概率的风险,则提示交易对方,提前做好防范,或者选择更加安全的交易对象。而对于小概率的风险,则可以通过平台及相关金融机构来解决,贸易方只需要承担小到不能再小的成本,甚至是免费,就可以大大改善资金运用效率。
从某种意义上说,这有些类似于保险精算。保险精算就是利用现代数学方法,对各自保险经济活动的风险进行分性、估价和管理的一门综合性科学。过去,在贸易的各个链条上,数据沉淀不够,或者根本没有数据可用,于是也无法精确识别贸易链条中的各种风险。
而大数据时代提供了这样的可能,任何环节的信息都沉淀为数据,进而通过现代数据的模型,去精确地评估风险,进而降低贸易的交易成本,促进贸易和贸易相关的金融业发展。而且这种判断和识别成本都是一对一的,且成本低廉。这对于其推广大大有益。
放眼长远,数据将会塑造一个全新的外贸时代,而交易成本大幅降低的外贸模式,也必将会吸引更多的中小企业跨入外贸的门槛,从全球范围内配置资源或寻找市场。这是一个新时代的开启,未来必将是一片蓝海。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30