京公网安备 11010802034615号
经营许可证编号:京B2-20210330
程序员之数据分析Python技术栈
Python是一种非常流行的脚本语言,其还提供了一个科学技术栈,可以进行快捷方便的数据分析,本系列文章将聚焦在如何使用基于Python的技术栈来构建数据分析的工具集合。工欲善其事,必先利其器,让我们来看看这些工具吧。
0. 数据分析 以及机器学习
信息时代唯一不变的就是变化。 随着信息化技术的推广和应用,大数据技术的大规模应用,于是乎数据分析、数据挖掘、机器学习甚至于从前高大上的人工智能(AI)已经开始频繁出现在各个场合,这一切昭示着数据时代的来临。
对于程序猿们来说,除了写代码,实现特定的功能之外,在这个纷繁变化的时代,也需要去了解和掌握一些数据分析的技能与工具,正如之前掌握一些Linux/数据库方面的技能一样;有了这些技能,可以给你大大加分,或许可以帮助你进入了一个崭新的广阔领域。
1. Python是什么?
Python是大名鼎鼎的通用脚本语言,可以满足全功能的程序设计需求;目前主流的是2.7.x和3.x版本,在2020年之时,2.x版本将不再被继续支持。 Python最大的有点就是简单易学,所以在其他领域内,应用甚广。我们这里所讲的各类工具包,都是建立在Python之上的。
2. IPython是什么?
ipython 是一个 python 的交互式 shell,比默认的python shell 好用得多,支持变量自动补全,自动缩进,支持 bash shell 命令,内置了许多很有用的功能和函数。对于诸多的程序猿们来说,这个就是一个极为强大的交互工具,基本上后续的诸多数据分析操作都是建立在ipython之上的。
ipython提供了多种实用模式,包括:terminal,界面以及web的交互界面等,非常的强大与易用。
3. Numpy
NumPy系统是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。据说NumPy将Python相当于变成一种免费的更强大的MatLab系统。
其速度很快,且功能强大,可以支持线性代数运算,傅立叶变换、随机数生成等等各类的数学元算。
4. Pandas
Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。
其中提供了DataFrame的强大二维结构来做为数据分析的基本结构主体,Series做为高效的数据组结构来使用。 Pandas兼具Numpy高性能的数组计算功能以及电子表格、关系数据库(SQL)灵活得数据分析功能, 可以方便地完成重塑、切片、切块、聚合、排序以及选取数据子集等操作。
5. Matplotlib(图形展示包)
matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中,它的文档相当完备,应用非常广泛,是Python进行数据分析的必备工具。且其已经与Pandas等工具包进行了深度集成,可以在pandas中直接调用各类绘图函数,直接生成对应图表。
6. Scipy
SciPy是一款方便、易于使用、专为科学和工程设计的Python工具包.它包括统计,优化,整合,线性代数模块,傅里叶变换,信号和图像处理,常微分方程求解器等等.
scipy有一个stats包,其中可以包含标准连续、离散概率分布、各类统计检验方法,以及更好的描述统计方法。
Numpy与Scipy的结合使用可以完全替代Matlab中的计算功能(包括其插件工具箱)
7. 常用的开发工具
以下为两个非常强大的集成开发环境,集成了各类所需的开发包,大家可以自行从官网上下载对应版本, 支持各类平台(window, mac, linux)以及32位/64位系统。
Canopy https://www.enthought.com/products/canopy/
Anaconda https://www.continuum.io/downloads
7. 总结
在Python的社区中有非常多的工具, 比如keras就是一个强大的机器学习的实现包,且已经可以直接使用Tensorflow实现卷积神经的计算,相当的骚包。 好了,希望大家通过本文对基于Python的数据分析技术栈有个直观的认识。稍后的文章中,我们还将逐步详细介绍如何来一步一步实现数据分析的工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31