
程序员之数据分析Python技术栈
Python是一种非常流行的脚本语言,其还提供了一个科学技术栈,可以进行快捷方便的数据分析,本系列文章将聚焦在如何使用基于Python的技术栈来构建数据分析的工具集合。工欲善其事,必先利其器,让我们来看看这些工具吧。
0. 数据分析 以及机器学习
信息时代唯一不变的就是变化。 随着信息化技术的推广和应用,大数据技术的大规模应用,于是乎数据分析、数据挖掘、机器学习甚至于从前高大上的人工智能(AI)已经开始频繁出现在各个场合,这一切昭示着数据时代的来临。
对于程序猿们来说,除了写代码,实现特定的功能之外,在这个纷繁变化的时代,也需要去了解和掌握一些数据分析的技能与工具,正如之前掌握一些Linux/数据库方面的技能一样;有了这些技能,可以给你大大加分,或许可以帮助你进入了一个崭新的广阔领域。
1. Python是什么?
Python是大名鼎鼎的通用脚本语言,可以满足全功能的程序设计需求;目前主流的是2.7.x和3.x版本,在2020年之时,2.x版本将不再被继续支持。 Python最大的有点就是简单易学,所以在其他领域内,应用甚广。我们这里所讲的各类工具包,都是建立在Python之上的。
2. IPython是什么?
ipython 是一个 python 的交互式 shell,比默认的python shell 好用得多,支持变量自动补全,自动缩进,支持 bash shell 命令,内置了许多很有用的功能和函数。对于诸多的程序猿们来说,这个就是一个极为强大的交互工具,基本上后续的诸多数据分析操作都是建立在ipython之上的。
ipython提供了多种实用模式,包括:terminal,界面以及web的交互界面等,非常的强大与易用。
3. Numpy
NumPy系统是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。据说NumPy将Python相当于变成一种免费的更强大的MatLab系统。
其速度很快,且功能强大,可以支持线性代数运算,傅立叶变换、随机数生成等等各类的数学元算。
4. Pandas
Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。
其中提供了DataFrame的强大二维结构来做为数据分析的基本结构主体,Series做为高效的数据组结构来使用。 Pandas兼具Numpy高性能的数组计算功能以及电子表格、关系数据库(SQL)灵活得数据分析功能, 可以方便地完成重塑、切片、切块、聚合、排序以及选取数据子集等操作。
5. Matplotlib(图形展示包)
matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中,它的文档相当完备,应用非常广泛,是Python进行数据分析的必备工具。且其已经与Pandas等工具包进行了深度集成,可以在pandas中直接调用各类绘图函数,直接生成对应图表。
6. Scipy
SciPy是一款方便、易于使用、专为科学和工程设计的Python工具包.它包括统计,优化,整合,线性代数模块,傅里叶变换,信号和图像处理,常微分方程求解器等等.
scipy有一个stats包,其中可以包含标准连续、离散概率分布、各类统计检验方法,以及更好的描述统计方法。
Numpy与Scipy的结合使用可以完全替代Matlab中的计算功能(包括其插件工具箱)
7. 常用的开发工具
以下为两个非常强大的集成开发环境,集成了各类所需的开发包,大家可以自行从官网上下载对应版本, 支持各类平台(window, mac, linux)以及32位/64位系统。
Canopy https://www.enthought.com/products/canopy/
Anaconda https://www.continuum.io/downloads
7. 总结
在Python的社区中有非常多的工具, 比如keras就是一个强大的机器学习的实现包,且已经可以直接使用Tensorflow实现卷积神经的计算,相当的骚包。 好了,希望大家通过本文对基于Python的数据分析技术栈有个直观的认识。稍后的文章中,我们还将逐步详细介绍如何来一步一步实现数据分析的工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04