
程序员之数据分析Python技术栈
Python是一种非常流行的脚本语言,其还提供了一个科学技术栈,可以进行快捷方便的数据分析,本系列文章将聚焦在如何使用基于Python的技术栈来构建数据分析的工具集合。工欲善其事,必先利其器,让我们来看看这些工具吧。
0. 数据分析 以及机器学习
信息时代唯一不变的就是变化。 随着信息化技术的推广和应用,大数据技术的大规模应用,于是乎数据分析、数据挖掘、机器学习甚至于从前高大上的人工智能(AI)已经开始频繁出现在各个场合,这一切昭示着数据时代的来临。
对于程序猿们来说,除了写代码,实现特定的功能之外,在这个纷繁变化的时代,也需要去了解和掌握一些数据分析的技能与工具,正如之前掌握一些Linux/数据库方面的技能一样;有了这些技能,可以给你大大加分,或许可以帮助你进入了一个崭新的广阔领域。
1. Python是什么?
Python是大名鼎鼎的通用脚本语言,可以满足全功能的程序设计需求;目前主流的是2.7.x和3.x版本,在2020年之时,2.x版本将不再被继续支持。 Python最大的有点就是简单易学,所以在其他领域内,应用甚广。我们这里所讲的各类工具包,都是建立在Python之上的。
2. IPython是什么?
ipython 是一个 python 的交互式 shell,比默认的python shell 好用得多,支持变量自动补全,自动缩进,支持 bash shell 命令,内置了许多很有用的功能和函数。对于诸多的程序猿们来说,这个就是一个极为强大的交互工具,基本上后续的诸多数据分析操作都是建立在ipython之上的。
ipython提供了多种实用模式,包括:terminal,界面以及web的交互界面等,非常的强大与易用。
3. Numpy
NumPy系统是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。据说NumPy将Python相当于变成一种免费的更强大的MatLab系统。
其速度很快,且功能强大,可以支持线性代数运算,傅立叶变换、随机数生成等等各类的数学元算。
4. Pandas
Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。
其中提供了DataFrame的强大二维结构来做为数据分析的基本结构主体,Series做为高效的数据组结构来使用。 Pandas兼具Numpy高性能的数组计算功能以及电子表格、关系数据库(SQL)灵活得数据分析功能, 可以方便地完成重塑、切片、切块、聚合、排序以及选取数据子集等操作。
5. Matplotlib(图形展示包)
matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中,它的文档相当完备,应用非常广泛,是Python进行数据分析的必备工具。且其已经与Pandas等工具包进行了深度集成,可以在pandas中直接调用各类绘图函数,直接生成对应图表。
6. Scipy
SciPy是一款方便、易于使用、专为科学和工程设计的Python工具包.它包括统计,优化,整合,线性代数模块,傅里叶变换,信号和图像处理,常微分方程求解器等等.
scipy有一个stats包,其中可以包含标准连续、离散概率分布、各类统计检验方法,以及更好的描述统计方法。
Numpy与Scipy的结合使用可以完全替代Matlab中的计算功能(包括其插件工具箱)
7. 常用的开发工具
以下为两个非常强大的集成开发环境,集成了各类所需的开发包,大家可以自行从官网上下载对应版本, 支持各类平台(window, mac, linux)以及32位/64位系统。
Canopy https://www.enthought.com/products/canopy/
Anaconda https://www.continuum.io/downloads
7. 总结
在Python的社区中有非常多的工具, 比如keras就是一个强大的机器学习的实现包,且已经可以直接使用Tensorflow实现卷积神经的计算,相当的骚包。 好了,希望大家通过本文对基于Python的数据分析技术栈有个直观的认识。稍后的文章中,我们还将逐步详细介绍如何来一步一步实现数据分析的工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 本课程 ...
2025-07-28CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-28PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-28t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-28PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21