
程序员之数据分析Python技术栈
Python是一种非常流行的脚本语言,其还提供了一个科学技术栈,可以进行快捷方便的数据分析,本系列文章将聚焦在如何使用基于Python的技术栈来构建数据分析的工具集合。工欲善其事,必先利其器,让我们来看看这些工具吧。
0. 数据分析 以及机器学习
信息时代唯一不变的就是变化。 随着信息化技术的推广和应用,大数据技术的大规模应用,于是乎数据分析、数据挖掘、机器学习甚至于从前高大上的人工智能(AI)已经开始频繁出现在各个场合,这一切昭示着数据时代的来临。
对于程序猿们来说,除了写代码,实现特定的功能之外,在这个纷繁变化的时代,也需要去了解和掌握一些数据分析的技能与工具,正如之前掌握一些Linux/数据库方面的技能一样;有了这些技能,可以给你大大加分,或许可以帮助你进入了一个崭新的广阔领域。
1. Python是什么?
Python是大名鼎鼎的通用脚本语言,可以满足全功能的程序设计需求;目前主流的是2.7.x和3.x版本,在2020年之时,2.x版本将不再被继续支持。 Python最大的有点就是简单易学,所以在其他领域内,应用甚广。我们这里所讲的各类工具包,都是建立在Python之上的。
2. IPython是什么?
ipython 是一个 python 的交互式 shell,比默认的python shell 好用得多,支持变量自动补全,自动缩进,支持 bash shell 命令,内置了许多很有用的功能和函数。对于诸多的程序猿们来说,这个就是一个极为强大的交互工具,基本上后续的诸多数据分析操作都是建立在ipython之上的。
ipython提供了多种实用模式,包括:terminal,界面以及web的交互界面等,非常的强大与易用。
3. Numpy
NumPy系统是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。据说NumPy将Python相当于变成一种免费的更强大的MatLab系统。
其速度很快,且功能强大,可以支持线性代数运算,傅立叶变换、随机数生成等等各类的数学元算。
4. Pandas
Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。
其中提供了DataFrame的强大二维结构来做为数据分析的基本结构主体,Series做为高效的数据组结构来使用。 Pandas兼具Numpy高性能的数组计算功能以及电子表格、关系数据库(SQL)灵活得数据分析功能, 可以方便地完成重塑、切片、切块、聚合、排序以及选取数据子集等操作。
5. Matplotlib(图形展示包)
matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中,它的文档相当完备,应用非常广泛,是Python进行数据分析的必备工具。且其已经与Pandas等工具包进行了深度集成,可以在pandas中直接调用各类绘图函数,直接生成对应图表。
6. Scipy
SciPy是一款方便、易于使用、专为科学和工程设计的Python工具包.它包括统计,优化,整合,线性代数模块,傅里叶变换,信号和图像处理,常微分方程求解器等等.
scipy有一个stats包,其中可以包含标准连续、离散概率分布、各类统计检验方法,以及更好的描述统计方法。
Numpy与Scipy的结合使用可以完全替代Matlab中的计算功能(包括其插件工具箱)
7. 常用的开发工具
以下为两个非常强大的集成开发环境,集成了各类所需的开发包,大家可以自行从官网上下载对应版本, 支持各类平台(window, mac, linux)以及32位/64位系统。
Canopy https://www.enthought.com/products/canopy/
Anaconda https://www.continuum.io/downloads
7. 总结
在Python的社区中有非常多的工具, 比如keras就是一个强大的机器学习的实现包,且已经可以直接使用Tensorflow实现卷积神经的计算,相当的骚包。 好了,希望大家通过本文对基于Python的数据分析技术栈有个直观的认识。稍后的文章中,我们还将逐步详细介绍如何来一步一步实现数据分析的工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27