京公网安备 11010802034615号
经营许可证编号:京B2-20210330
传统零售企业如何玩转大数据
在零售行业不断变化发展的今天,数据成为当下最热的行业话题之一,从各方面的信息来看,我们的确进入了IT向DT时代转型的一个重要时期。如今的零售行业,不论是电商还是传统零售对数据都非常重视。
但是,传统零售因技术手段和实体店的营业环境影响,在数据收集、分析、保护、返回终端使用上遇到较大挑战。怎么利用现代化的科技手段,加速门店端的科技化转型,扩宽数据收集渠道,合理分析数据并尽快在终端销售使用,真正走向全新的零售成为传统零售所要面对的重大课题。
数据采集“软件”“硬件”都要硬
零售数据的采集需要相关的软硬件,而传统零售企业,大部分对IT投入不足,因此这方面的业务多为第三方提供。如今,市面上提供相关硬件服务的服务商很多,而提供软件服务的就极其匮乏,能够在软硬件都有一定建树的就更是寥寥无几,而英特尔就解决了这类问题。
众周所知,英特尔是世界上最大的硬件公司,同样英特尔也有着世界上最大的软件研发团队。
据悉,英特尔软件研发团队规模超过万人,而硬件与平台软件解决方案之间的优化、适配就是很重要的一项工作。而为了离用户更近,英特尔与很多业内的软件服务商都达成了合作,比如与hadoop解决方案提供商Cloudera的合作。
据了解,英特尔正在引领业界大数据基准测试的标准化,制定了Big Bench、High Bench的测试标准。在机器学习方面,通过硬件、软件的同步提升、优化帮助客户提高机器学习模块的可扩展性。
在物联网领域,如何更好地将数据收集和商业决定实时结合,英特尔和浙江大华在视频监控领域已取得合作成果。
大数据是英特尔发展最快的领域,每年在全球以31%的速度递涨,这还是保守估计。英特尔在软硬件的造诣能够圆满解决传统零售在收集大数据是软硬件的顾虑。
数据的利用在于精准营销活动优化
数据的价值在于精准营销,利用精准营销,零售商们将数据转变为可行的洞察,进而实施更智能的活动。例如,以往的历史购买数据可用于预测哪些顾客最有可能购买新产品。
产品使用信息可用于预测哪种新功能将具备最高的市场影响力。利用从社交媒体收集的数据,可以更轻松地确定下一个流行或潮流产品。
如果使用得当,数据可帮助零售商更深入地了解顾客的购买历史,然后他们就可以据此预测顾客的购买时间,并蓄势以待。
数据的使用方法多种多样,从客户购物时自动生成的“穿戴建议”,到更为高级的活动优化,它们都能帮助零售商最大程度地发挥营销预算的价值。
通过采取最佳的精准营销实践,您可以举办针对性更强且更有效的活动。您不但能够提供精准的产品建议,还可以采用多种方法从新数据和现有数据中获取价值。
试想一下,通过按地区划分顾客,并以更具针对性的价格吸引他们前往门店,借此来加快某家门店存储过量产品的销售速度。或者针对不断变化的客户群调整通知和报价。
通过适时向正确的人发送正确的信息,您可以实现精准营销,以此降低活动成本,并提升交易达成率。
除了传达活动优化之外,数据也可以用来提升供应链的效率(通过帮助您实现更精准的需求规划),借此增加高价值货物的周转次数。
然而许多传统零售商在收集数据后,面对庞大的数据群,只能做简单的分析,对高要求高精准的营销分析则一筹莫展。
基于英特尔技术构建的零售企业,以最大化数据价值,致力于简化数据处理流程的可管理性,降低其复杂程度,同时确保端到端的安全性。
现在,最新的SAS解决方案联合下一代英特尔至强处理器强大性能,使零售商能够在更短的时间内运行更复杂的分析。
数据改变终端零售体验
随着用工成本和土地成本的上涨,为节约成本,各大实体零售都在不同程度的裁员。人员的紧张导致卖场服务人员的缺乏,顾客购物体验下降。
特别是当顾客需要某产品时,现场服务人员无法迅速知道商品是否还有库存,如果仓库寻找,就会导致现场没有服务人员的尴尬,而且常常因库存偏差导致顾客体检极度丧失。
据报道,库存过剩、缺货和损耗等库存偏差给全球零售商造成了近 1.1万亿美元的损失。举例来说,仅库存损耗一项就可会给美国零售商造成 420亿美元的损失,这一数字几乎占总零售额的1.5%。
据Retail Touch Points调查发现,配备了基于英特尔处理器的平板电脑和智能手机的门店,顾客满意度显著提高,英特尔构架平板电脑和二合一设备,让零售商能够扩大技术和信息的使用范围,并将其交付给现场服务的员工手中。
这种设备首先可以提高员工对产品的专业度,其次他还能支持店员无需前往库房便可以随时查看可用库存从而保证与顾客之间的互动不会间断,最后他还可以提供移动支付功能,减少收银排队。使用这种设备,可以解决员工不足导致的顾客体验缺失的现象。
零售商通过使用英特尔良好的软硬件设施对前端消费数据,商品数据采集,后端及时深入分析,然后通过精准营销吸引顾客到店,而基于英特尔架构二合一平板电脑和智能手机设备又可以解决销售前线员工专业性和服务人员缺乏的问题。一举多得,英特尔提供了解决数据时代传统零售困境的整体解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06