
传统零售企业如何玩转大数据
在零售行业不断变化发展的今天,数据成为当下最热的行业话题之一,从各方面的信息来看,我们的确进入了IT向DT时代转型的一个重要时期。如今的零售行业,不论是电商还是传统零售对数据都非常重视。
但是,传统零售因技术手段和实体店的营业环境影响,在数据收集、分析、保护、返回终端使用上遇到较大挑战。怎么利用现代化的科技手段,加速门店端的科技化转型,扩宽数据收集渠道,合理分析数据并尽快在终端销售使用,真正走向全新的零售成为传统零售所要面对的重大课题。
数据采集“软件”“硬件”都要硬
零售数据的采集需要相关的软硬件,而传统零售企业,大部分对IT投入不足,因此这方面的业务多为第三方提供。如今,市面上提供相关硬件服务的服务商很多,而提供软件服务的就极其匮乏,能够在软硬件都有一定建树的就更是寥寥无几,而英特尔就解决了这类问题。
众周所知,英特尔是世界上最大的硬件公司,同样英特尔也有着世界上最大的软件研发团队。
据悉,英特尔软件研发团队规模超过万人,而硬件与平台软件解决方案之间的优化、适配就是很重要的一项工作。而为了离用户更近,英特尔与很多业内的软件服务商都达成了合作,比如与hadoop解决方案提供商Cloudera的合作。
据了解,英特尔正在引领业界大数据基准测试的标准化,制定了Big Bench、High Bench的测试标准。在机器学习方面,通过硬件、软件的同步提升、优化帮助客户提高机器学习模块的可扩展性。
在物联网领域,如何更好地将数据收集和商业决定实时结合,英特尔和浙江大华在视频监控领域已取得合作成果。
大数据是英特尔发展最快的领域,每年在全球以31%的速度递涨,这还是保守估计。英特尔在软硬件的造诣能够圆满解决传统零售在收集大数据是软硬件的顾虑。
数据的利用在于精准营销活动优化
数据的价值在于精准营销,利用精准营销,零售商们将数据转变为可行的洞察,进而实施更智能的活动。例如,以往的历史购买数据可用于预测哪些顾客最有可能购买新产品。
产品使用信息可用于预测哪种新功能将具备最高的市场影响力。利用从社交媒体收集的数据,可以更轻松地确定下一个流行或潮流产品。
如果使用得当,数据可帮助零售商更深入地了解顾客的购买历史,然后他们就可以据此预测顾客的购买时间,并蓄势以待。
数据的使用方法多种多样,从客户购物时自动生成的“穿戴建议”,到更为高级的活动优化,它们都能帮助零售商最大程度地发挥营销预算的价值。
通过采取最佳的精准营销实践,您可以举办针对性更强且更有效的活动。您不但能够提供精准的产品建议,还可以采用多种方法从新数据和现有数据中获取价值。
试想一下,通过按地区划分顾客,并以更具针对性的价格吸引他们前往门店,借此来加快某家门店存储过量产品的销售速度。或者针对不断变化的客户群调整通知和报价。
通过适时向正确的人发送正确的信息,您可以实现精准营销,以此降低活动成本,并提升交易达成率。
除了传达活动优化之外,数据也可以用来提升供应链的效率(通过帮助您实现更精准的需求规划),借此增加高价值货物的周转次数。
然而许多传统零售商在收集数据后,面对庞大的数据群,只能做简单的分析,对高要求高精准的营销分析则一筹莫展。
基于英特尔技术构建的零售企业,以最大化数据价值,致力于简化数据处理流程的可管理性,降低其复杂程度,同时确保端到端的安全性。
现在,最新的SAS解决方案联合下一代英特尔至强处理器强大性能,使零售商能够在更短的时间内运行更复杂的分析。
数据改变终端零售体验
随着用工成本和土地成本的上涨,为节约成本,各大实体零售都在不同程度的裁员。人员的紧张导致卖场服务人员的缺乏,顾客购物体验下降。
特别是当顾客需要某产品时,现场服务人员无法迅速知道商品是否还有库存,如果仓库寻找,就会导致现场没有服务人员的尴尬,而且常常因库存偏差导致顾客体检极度丧失。
据报道,库存过剩、缺货和损耗等库存偏差给全球零售商造成了近 1.1万亿美元的损失。举例来说,仅库存损耗一项就可会给美国零售商造成 420亿美元的损失,这一数字几乎占总零售额的1.5%。
据Retail Touch Points调查发现,配备了基于英特尔处理器的平板电脑和智能手机的门店,顾客满意度显著提高,英特尔构架平板电脑和二合一设备,让零售商能够扩大技术和信息的使用范围,并将其交付给现场服务的员工手中。
这种设备首先可以提高员工对产品的专业度,其次他还能支持店员无需前往库房便可以随时查看可用库存从而保证与顾客之间的互动不会间断,最后他还可以提供移动支付功能,减少收银排队。使用这种设备,可以解决员工不足导致的顾客体验缺失的现象。
零售商通过使用英特尔良好的软硬件设施对前端消费数据,商品数据采集,后端及时深入分析,然后通过精准营销吸引顾客到店,而基于英特尔架构二合一平板电脑和智能手机设备又可以解决销售前线员工专业性和服务人员缺乏的问题。一举多得,英特尔提供了解决数据时代传统零售困境的整体解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28