
是否可以这样说,它们是利用不同方法解决相似问题的四个领域?它们之间到底有什么共同点和不同点?如果它们之间有层次等级的区分,应该是怎样一回事?
我假定题主是想得到一个清晰的图,上面有各个领域清晰的分界线。因此,在这里我尝试用我最简单的方式来解释这个问题。
机器学习是一门涉及自学习算法发展的科学。这类算法本质上是通用的,可以应用到众多相关问题的领域。
数据挖掘是一类实用的应用算法(大多是机器学习算法),利用各个领域产出的数据来解决各个领域相关的问题。
统计学是一门研究怎样收集,组织,分析和解释数据中的数字化信息的科学。统计学可以分为两大类:描述统计学和推断统计学。描述统计学涉及组织,累加和描绘数据中的信息。推断统计学涉及使用抽样数据来推断总体。
机器学习利用统计学(大多是推断统计学)来开发自学习算法。
数据挖掘则是在从算法得到的结果上应用统计学(大多是描述统计学),来解决问题。
数据挖掘作为一门学科兴起,旨在各种各样的行业中(尤其是商业)求解问题,求解过程需要用到不同研究领域的不同技术和实践。
1960年求解问题的从业者使用术语Data fishing来称呼他们所做的工作。1989年Gregory Piatetsky Shapiro使用术语knowledge Discovery in the Database(KDD,数据集上的知识发掘)。1990年一家公司在商标上使用术语数据挖掘来描述他们的工作。现如今现如今数据挖掘和KDD两词可以交换使用。
人工智能这门科学的目的在于开发一个模拟人类能在某种环境下做出反应和行为的系统或软件。由于这个领域极其广泛,人工智能将其目标定义为多个子目标。然后每个子目标就都发展成了一个独立的研究分支。
这里是一张人工智能所要完成的主要目标列表(亦称为AI问题)
1、Reasoning(推理)
2、Knowledge representation(知识表示)
3、Automated planning and scheduling(自动规划)
4、Machine learning(机器学习)
5、Natural language processing(自然语言处理)
6、Computer vision(计算机视觉)
7、Robotics(机器人学)
8、General intelligence or strong AI(通用智能或强人工智能)
正如列表中提到的,机器学习这一研究领域是由AI的一个子目标发展而来,用来帮助机器和软件进行自我学习来解决遇到的问题。
自然语言处理是另一个由AI的一个子目标发展而来的研究领域,用来帮助机器与真人进行沟通交流。
计算机视觉是由AI的目标而兴起的一个领域,用来辨认和识别机器所能看到的物体。
机器人学也是脱胎于AI的目标,用来给一个机器赋予实际的形态以完成实际的动作。
它们之间有层次等级的区分吗,应该是怎样一回事?
解释这些科学和研究层次关系的一个方法是分析其历史。
科学和研究的起源
统计学——1749年
人工智能——1940年
机器学习——1946年
数据挖掘——1980年
统计学的历史公认起源于1749年左右,用来表征信息。研究人员使用统计学来表征国家的经济水平以及表征用于军事用途的物质资源。随后统计学的用途扩充到数据的分析及其组织。
人工智能的历史碰巧存在两种类型:经典的和现代的。经典人工智能可在古时的故事和著作中看得到。然而,1940年当人们在描述用机器模仿人类的思想时才出现了现代人工智能。
1946年,作为AI的分支,机器学习的起源出现了,它的目标在于使机器不通过编程和明确的硬接线进行自我学习来对目标求解。
是否可以这样说,它们是利用不同方法解决相似问题的四个领域?
可以这么来说(统计学,人工智能和机器学习)是高度相互依赖的领域,没有其他领域的引领和帮助,他们不能够单独存在。很高兴能看到这三个领域是一个全局领域而非三个有所隔阂的领域。
正如这三个领域是一个全局领域,它们在解决共同目标时发挥了自己的优势。因此,该方案适用于许多不同领域中,因为隐含的核心问题是一致的。
接下来是该数据挖掘出场了,它从全局获取解决方案并应用到不同的领域(商业、军事、医学、太空)来解决同一隐含本质的问题。这也是数据挖掘扩大其受欢迎程度的时期。
我希望我的解释已经回答了答主所提问一切疑问,我相信这能清晰地帮助任何一个想要理解这四个领域关键点的人们。如果你对该话题有任何想要说的或者要分享的,请在评论里写下你的想法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25