
对于有SQL背景的R语言学习者而言,sqldf是一个非常有用的包,因为它使我们能在R中使用SQL命令。只要掌握了基本的SQL技术,我们就能利用它们在R中操作数据框。关于sqldf包的更多信息,可以参看 cran 。
在这篇文章中,我们将展示如何在R中利用SQL命令来连接、检索、排序和筛选数据。我们也将展示怎么利用R语言的函数来实现这些功能。最近我在处理一些FDA(译者注:食品及药物管理局)的不良事件数据。这些数据非常混乱:有缺失值,有重复记录,有不同时间建立的数据集的可比性问题,不同数据集中变量名称和数量也不统一(比如一个数据集里叫sex,另一个里叫gender),还有疏忽错误等问题。但正因如此,这些数据对于数据科学家或者爱好者而言到是理想的练手对象。
本文使用的FDA不良事件数据可以从公开渠道获得,csv格式的数据表可以从国家经济研究局下载。通过R从国家经济研究局的网站下载数据相对更容易,我建议你使用相应的R代码来下载并探索数据。
不良事件数据集是以季度为发布周期,每个季度的数据包括了人口信息、药物/生物信息、不良事件详情,结果和诊断情况等信息。
让我们下载数据并使用SQL命令来连接、排序和筛选该数据集中包含的大量数据框。
加载R包
require(downloader)
library(dplyr)
library(sqldf)
library(data.table)
library(ggplot2)
library(compare)
library(plotrix)
基本的错误处理函数tryCatch()
我们将使用这个函数来处理下载的数据。因为数据以季度频率发布,每年都会有四个观测值(每年有四条记录)。运行这个函数能自动下载数据,但如果某些季度数据从网上无法获取(尚未公布),该函数会返回一条错误信息表示无法找到数据集。现在让我们下载数据的压缩包并将其解压。
try.error = function(url)
{
try_error = tryCatch(download(url,dest="data.zip"), error=function(e) e)
if (!inherits(try_error, "error")){
download(url,dest="data.zip")
unzip ("data.zip")
}
else if (inherits(try_error, "error")){
cat(url,"not found\n")
}
}
下载不良事件数据
我们可以得到自2004年起的FDA不良事件数据。本文将使用2013年以来公布的数据,我们将检查截至当前时间的最新数据并下载。
> Sys.time() 函数会返回当前的日期和时间。数据分析师培训
> data.table包中的year()函数会从之前返回的当前时间中提取年份信息。
我们将下载人口、药物、诊断/指示,结果和反应(不良事件)数据。
year_start=2013
year_last=year(Sys.time())
for (i in year_start:year_last){
j=c(1:4)
for (m in j){
url1<-paste0("http://www.nber.org/fda/faers/",i,"/demo",i,"q",m,".csv.zip")
url2<-paste0("http://www.nber.org/fda/faers/",i,"/drug",i,"q",m,".csv.zip")
url3<-paste0("http://www.nber.org/fda/faers/",i,"/reac",i,"q",m,".csv.zip")
url4<-paste0("http://www.nber.org/fda/faers/",i,"/outc",i,"q",m,".csv.zip")
url5<-paste0("http://www.nber.org/fda/faers/",i,"/indi",i,"q",m,".csv.zip")
try.error(url1)
try.error(url2)
try.error(url3)
try.error(url4)
try.error(url5)
}
}
http://www.nber.org/fda/faers/2015/demo2015q4.csv.zip not found
...
http://www.nber.org/fda/faers/2016/indi2016q4.csv.zip not found
根据上面的错误信息,截至成文时间(2016年3月13日),我们最多可以获得2015年第三季度的不良事件数据。
> list.files()函数会字符串向量的形式返回当前工作目录下所有文件的名字。
> 我会使用正则表达式对各个数据集的类别进行筛选。比如^demo.*.csv表示所有名字以demo开头的csv文件。
filenames <- list.files(pattern="^demo.*.csv", full.names=TRUE)
cat('We have downloaded the following quarterly demography datasets')
filenames
我们已经下载了下列季度人口数据
"./demo2012q1.csv" "./demo2012q2.csv" "./demo2012q3.csv" "./demo2012q4.csv" "./demo2013q1.csv" "./demo2013q2.csv" "./demo2013q3.csv" "./demo2013q4.csv" "./demo2014q1.csv" "./demo2014q2.csv" "./demo2014q3.csv" "./demo2014q4.csv" "./demo2015q1.csv" "./demo2015q2.csv" "./demo2015q3.csv"
让我们用data.table包中的fread()函数来读入这些数据集,以人口数据为例:
demo=lapply(filenames,fread)
接着让我们把它们转换数据结构并合并成一个数据框:
demo_all=do.call(rbind,lapply(1:length(demo),function(i) select(as.data.frame(demo[i]),primaryid,caseid, age,age_cod,event_dt,sex,reporter_country)))
dim(demo_all)
3554979 7
我们看到人口数据有超过350万行观测(记录)。
译者注:下面的内容都是重复这个流程,可以略过
现在让我们合并所有的药品数据
filenames <- list.files(pattern="^drug.*.csv", full.names=TRUE)
cat('We have downloaded the following quarterly drug datasets:\n')
filenames
drug=lapply(filenames,fread)
cat('\n')
cat('Variable names:\n')
names(drug[[1]])
drug_all=do.call(rbind,lapply(1:length(drug), function(i) select(as.data.frame(drug[i]),primaryid,caseid, drug_seq,drugname,route)))
我们已经下载了下列季度药品数据集
"./drug2012q1.csv" "./drug2012q2.csv" "./drug2012q3.csv" "./drug2012q4.csv" "./drug2013q1.csv" "./drug2013q2.csv" "./drug2013q3.csv" "./drug2013q4.csv" "./drug2014q1.csv" "./drug2014q2.csv" "./drug2014q3.csv" "./drug2014q4.csv" "./drug2015q1.csv" "./drug2015q2.csv" "./drug2015q3.csv"
每张表中的变量名分别为:
"primaryid" "drug_seq" "role_cod" "drugname" "val_vbm" "route" "dose_vbm" "dechal" "rechal" "lot_num" "exp_dt" "exp_dt_num" "nda_num"
合并所有的诊断/指示数据集
filenames <- list.files(pattern="^indi.*.csv", full.names=TRUE)
cat('We have downloaded the following quarterly diagnoses/indications datasets:\n')
filenames
indi=lapply(filenames,fread)
cat('\n')
cat('Variable names:\n')
names(indi[[15]])
indi_all=do.call(rbind,lapply(1:length(indi), function(i) select(as.data.frame(indi[i]),primaryid,caseid, indi_drug_seq,indi_pt)))
已经下载的数据集为:
"./indi2012q1.csv" "./indi2012q2.csv" "./indi2012q3.csv" "./indi2012q4.csv" "./indi2013q1.csv" "./indi2013q2.csv" "./indi2013q3.csv" "./indi2013q4.csv" "./indi2014q1.csv" "./indi2014q2.csv" "./indi2014q3.csv" "./indi2014q4.csv" "./indi2015q1.csv" "./indi2015q2.csv" "./indi2015q3.csv"
变量名为:
"primaryid" "caseid" "indi_drug_seq" "indi_pt"
合并病人的结果数据:
filenames <- list.files(pattern="^outc.*.csv", full.names=TRUE)
cat('We have downloaded the following quarterly patient outcome datasets:\n')
filenames
outc_all=lapply(filenames,fread)
cat('\n')
cat('Variable names\n')
names(outc_all[[1]])
names(outc_all[[4]])
colnames(outc_all[[4]])=c("primaryid", "caseid", "outc_cod")
outc_all=do.call(rbind,lapply(1:length(outc_all), function(i) select(as.data.frame(outc_all[i]),primaryid,outc_cod)))
下载的数据集如下:
"./outc2012q1.csv" "./outc2012q2.csv" "./outc2012q3.csv" "./outc2012q4.csv" "./outc2013q1.csv" "./outc2013q2.csv" "./outc2013q3.csv" "./outc2013q4.csv" "./outc2014q1.csv" "./outc2014q2.csv" "./outc2014q3.csv" "./outc2014q4.csv" "./outc2015q1.csv" "./outc2015q2.csv" "./outc2015q3.csv"
变量名:
"primaryid" "outc_cod"
"primaryid" "caseid" "outc_code"
最后来合并反应(不良事件)数据集(译者注:这部分无聊地我要哭了)
filenames <- list.files(pattern="^reac.*.csv", full.names=TRUE)
cat('We have downloaded the following quarterly reaction (adverse event) datasets:\n')
filenames
reac=lapply(filenames,fread)
cat('\n')
cat('Variable names:\n')
names(reac[[3]])
reac_all=do.call(rbind,lapply(1:length(indi), function(i) select(as.data.frame(reac[i]),primaryid,pt)))
下载的数据集有:
"./reac2012q1.csv" "./reac2012q2.csv" "./reac2012q3.csv" "./reac2012q4.csv" "./reac2013q1.csv" "./reac2013q2.csv" "./reac2013q3.csv" "./reac2013q4.csv" "./reac2014q1.csv" "./reac2014q2.csv" "./reac2014q3.csv" "./reac2014q4.csv" "./reac2015q1.csv" "./reac2015q2.csv" "./reac2015q3.csv"
变量名为:
"primaryid" "pt"
让我们看看不同的数据类型各有多少行
all=as.data.frame(list(Demography=nrow(demo_all),Drug=nrow(drug_all),
Indications=nrow(indi_all),Outcomes=nrow(outc_all),
Reactions=nrow(reac_all)))
row.names(all)='Number of rows'
all
SQL命令=
记住sqldf包使用SQLite
COUNT
# SQL版本 sqldf("SELECT COUNT(primaryid)as 'Number of rows of Demography data' FROM demo_all;")
# R版本
nrow(demo_all)
3554979
LIMIT命令(显示前几行)
# SQL版本
sqldf("SELECT *
FROM demo_all
LIMIT 6;")
# R版本 head(demo_all,6)
R1=head(demo_all,6)
SQL1 =sqldf("SELECT *
FROM demo_all
LIMIT 6;")
all.equal(R1,SQL1)
TRUE
*译者注:这部分代码验证了SQL命令和R代码的等价性,下同。
WHERE命令
SQL2=sqldf("SELECT * FROM demo_all WHERE sex ='F';")
R2 = filter(demo_all, sex=="F")
identical(SQL2, R2)
TRUE
SQL3=sqldf("SELECT * FROM demo_all WHERE age BETWEEN 20 AND 25;")
R3 = filter(demo_all, age >= 20 & age <= 25)
identical(SQL3, R3)
TRUE
GROUP BY 和 ORDER BY
# SQL版本
sqldf("SELECT sex, COUNT(primaryid) as Total
FROM demo_all
WHERE sex IN ('F','M','NS','UNK')
GROUP BY sex
ORDER BY Total DESC ;")
# R版本
demo_all %>% filter(sex %in%c('F','M','NS','UNK')) %>% group_by(sex) %>%
summarise(Total = n()) %>% arrange(desc(Total))
SQL3 = sqldf("SELECT sex, COUNT(primaryid) as Total
FROM demo_all
GROUP BY sex
ORDER BY Total DESC ;")
R3 = demo_all%>%group_by(sex) %>%
summarise(Total = n())%>%arrange(desc(Total))
compare(SQL3,R3, allowAll=TRUE)
TRUE
dropped attributes
SQL=sqldf("SELECT sex, COUNT(primaryid) as Total
FROM demo_all
WHERE sex IN ('F','M','NS','UNK')
GROUP BY sex
ORDER BY Total DESC ;")
SQL$Total=as.numeric(SQL$Total
pie3D(SQL$Total, labels = SQL$sex,explode=0.1,col=rainbow(4),
main="Pie Chart of adverse event reports by gender",cex.lab=0.5, cex.axis=0.5, cex.main=1,labelcex=1)
输出的图如下:
Inner Join
让我们把药品数据和指数数据基于主id和药品序列内连。
首先,我们要检查下变量名,看看如何合并两个数据集。
names(indi_all)
names(drug_all)
"primaryid" "indi_drug_seq" "indi_pt"
"primaryid" "drug_seq" "drugname" "route"
names(indi_all)=c("primaryid", "drug_seq", "indi_pt" ) # 使两个数据集变量名一致
R4= merge(drug_all,indi_all, by = intersect(names(drug_all), names(indi_all))) # R版本合并
R4=arrange(R3, primaryid,drug_seq,drugname,indi_pt) # R版本排序
SQL4= sqldf("SELECT d.primaryid as primaryid, d.drug_seq as drug_seq, d.drugname as drugname,
d.route as route,i.indi_pt as indi_pt
FROM drug_all d
INNER JOIN indi_all i
ON d.primaryid= i.primaryid AND d.drug_seq=i.drug_seq
ORDER BY primaryid,drug_seq,drugname, i.indi_pt") # SQL版本
compare(R4,SQL4,allowAll=TRUE)
TRUE # 两种方法等价
R5 = merge(reac_all,outc_all,by=intersect(names(reac_all), names(outc_all)))
SQL5 =reac_outc_new4=sqldf("SELECT r.*, o.outc_cod as outc_cod
FROM reac_all r
INNER JOIN outc_all o
ON r.primaryid=o.primaryid
ORDER BY r.primaryid,r.pt,o.outc_cod")
compare(R5,SQL5,allowAll = TRUE)
TRUE
# 绘制不同性别的年龄概率分布密度图
ggplot(sqldf('SELECT age, sex
FROM demo_all
WHERE age between 0 AND 100 AND sex IN ("F","M")
LIMIT 10000;'), aes(x=age, fill = sex))+ geom_density(alpha = 0.6)
绘制出的图如下:
绘制不同结果的年龄年龄概率分布密度图(译者注:后面都是结果的可视化,可略过。原作者的耐心真好。。。)
ggplot(sqldf("SELECT d.age as age, o.outc_cod as outcome
FROM demo_all d
INNER JOIN outc_all o
ON d.primaryid=o.primaryid
WHERE d.age BETWEEN 20 AND 100
LIMIT 20000;"),aes(x=age, fill = outcome))+ geom_density(alpha = 0.6)
输出如下:
ggplot(sqldf("SELECT de.sex as sex, dr.route as route
FROM demo_all de
INNER JOIN drug_all dr
ON de.primaryid=dr.primaryid
WHERE de.sex IN ('M','F') AND dr.route IN ('ORAL','INTRAVENOUS','TOPICAL')
LIMIT 200000;"),aes(x=route, fill = sex))+ geom_bar(alpha=0.6)
输出如下:
ggplot(sqldf("SELECT d.sex as sex, o.outc_cod as outcome
FROM demo_all d
INNER JOIN outc_all o
ON d.primaryid=o.primaryid
WHERE d.age BETWEEN 20 AND 100 AND sex IN ('F','M')
LIMIT 20000;"),aes(x=outcome,fill=sex))+ geom_bar(alpha = 0.6)
输出如下(译者注:哥们儿挺住,你就快看完了!!!):
UNION ALL
demo1= demo_all[1:20000,]
demo2=demo_all[20001:40000,]
R6 <- rbind(demo1, demo2)
SQL6 <- sqldf("SELECT * FROM demo1 UNION ALL SELECT * FROM demo2;")
compare(R6,SQL6, allowAll = TRUE)
TRUE
INTERSECT
R7 <- semi_join(demo1, demo2)
SQL7 <- sqldf("SELECT * FROM demo1 INTERSECT SELECT * FROM demo2;")
compare(R7,SQL7, allowAll = TRUE)
TRUE
EXCEPT
R8 <- anti_join(demo1, demo2)
SQL8 <- sqldf("SELECT * FROM demo1 EXCEPT SELECT * FROM demo2;")
compare(R8,SQL8, allowAll = TRUE)
TRUE
翻译感悟:这篇文章的作者不厌其烦地演示了利用如何sqldf包在R中实现大部分常用的SQL命令,并将其结果和直接调用相应的R函数的结果做了对照,证明了二者的等价性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 本课程 ...
2025-07-28CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-28PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-28t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-28PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21