京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析在汽车召回制度上的应用_数据分析师
汽车召回制度(recall),是指投放市场的汽车,发现由于设计或制造方面的原因存在缺陷,不符合有关法规、标准,有可能导致安全及环保问题,厂家必须及时向国家有关部门报告该产品存在问题、造成问题的原因、改善措施等,提出召回申请,经批准后对在用车辆进行改造,以消除事故隐患。召回制度的引入,将降低汽车因产品质量问题给消费者带来的安全隐患,大大提高了产品使用的可靠性,对于维护消费者的合法权益具有重要意义。
汽车召回制度在美国、日本、加拿大、英国、澳大利亚等发达国家已经得到了普通的执行和认可,随着中国汽车市场的不断完善和成熟,我国的汽车召回制度也日趋完善, 2002年10月质检总局颁布《汽车产品召回管理规定(草案)》; 2004年10月1日开始,我国开始实施由国家质量监督检验检疫总局、国家发展和改革委员会、商务部、海关总署联合制定发布《缺陷汽车产品召回管理规定》,2014年10月10日国家质检总局又发布《缺陷汽车产品召回管理条例实施办法(征求意见稿)》,我国的汽车召回制度也经历了从无到有,从整体到局部的不断发展和完善的过程。
汽车召回制度的实施,确保用户对于产品的正常使用,为用户挽回了大量的经济损失,保障了用户生命安全。根据国家质检总局发布的最新统计数据显示,截至2014年9月30日,十年来我国已实施汽车召回793次,共1688.5万辆。而从年度召回数量数据来看,2009年,我国汽车召回数量首次突破100万辆之后,2013年这一数字更超过530万辆。 不仅如此,缺陷产品召回制度实施十年以来,单从汽车召回上来看,已经挽回直接经济损失238亿元。而在不断升级和强化的汽车召回制度建设过程中,召回主体对于召回的态度也有开始转变的趋势。企业召回的主体责任意识也正在明显加强,更多的企业认为召回是维护企业形象和加强质量管理的一项重要措施。总体来说,近十多年中国汽车召回制度的建设和发展,对保障汽车行业健康有序发展,维护消费者利益起到了重要的作用。
召回制度是保障汽车厂商不断完善其产品质量的一种机制,汽车的质量的保障是一项复杂的系统工程,从设计角度来说,在设计室设计出的完美车型投入到实际运作中,可能并不完美;从生产角度来说,汽车是一个非常复杂、工艺水平要求非常高的产品,因而可能在生产过程中存在操作失误;从使用角度来说,一些缺陷只有在使用一段时间后才暴露出来,因而召回制度对于汽车质量的保障有着重要的意义。但从汽车从设计、生产到移交客户的使用的漫长过程中,存在太多的工序和环境影响,加之汽车是由众多零部件一起组装而成的复杂系统,如何能够有效的评估各个部件的产品质量,以及对于汽车整体质量安全的影响,也是一件相当复杂的工作。
可靠性分析,旨在通过对于消费者产品使用的失效信息进行收集,从而构建产品的可靠性预测模型,实现对于产品可靠性进行整体预测,对于各种失效模式进行分析比较,从而对产品进行更好的质量改进。通过可靠性分析,可以帮助汽车企业更好的预测产品失效时间,失效机理及失效部件对于整体产品的影响,为企业的产品召回提供良好的信息支持,从被动的接受召回向主动的召回改进,更好的保障了产品质量,提升了客户服务质量,增进了企业声誉。
通过可靠性分析,可以极大的帮助汽车企业进行各项产品寿命的预测,对于产品的召回等主动预防有着重要的意义。但在使用过程中,可靠性分析对于分析人员有着较高的数理统计分析知识的要求,加上用户使用的多样性等其他外在影响因素也为可靠性分析带来了更大的难度。因此,如果能够借助使用便捷、安全准确的分析工具将对可靠性分析产生极大的帮助,将对可靠性分析起到重要的作用,而这些又对数据分析工具提出了更高的要求:
1) 准确快速的数据分析能力,准确是数据分析的根本要求,只有准确分析的结果,才能为后续的工作提供正确的参考。本文来自:CDA数据分析师培训官网
2) 快速便捷的模型构建能力,数据建模本身是一件计算量繁琐的专业工作,对于专业要求高,而大部分生产质量管理人员往往并不具备较强的专业知识背景,这就需要分析工具能够提供便捷的模型构建能力,帮助用户实现快速准确的模型构建。
3) 操作友好的交互能力,数据分析本身是一个充满无知的探索性工作,很多结果结论都是在探索的过程中被发现的,所以操作友好的交互能力,也会为我们的数据探索提供更多的便利,使得分析人员能够探索出未知的知识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20