
数据在四个层面上的价值思考
1、思考一下,数据是什么?
“掌握数据就掌握一切”,已经成为大部分互联网公司的基本认识,你只要有用户数据,行为数据,关系链数据,就可以在此基础上衍生出很多新的玩法,新的服务等等甚至之前不存在的产品。
那么数据是什么呢?
我理解的数据其实就是我们个人和社会活动中所有状态和行动的记录。这种记录可以是连续的,也可以是离散的。可以是单点的,也可以是关联的。
数据可以由数字构成,也可以由简单的标签构成,可以是复杂的图像,也可以仅仅由“YES” or “NO” 两种形态。
关键的是,你如何定义这个数据,以及如何使用这些数据。
如果只是将其存储在物理的计算机存储器中,这些数据就是历史,是对资源的浪费。
2、数据在四个层面上的价值分析
数据价值的分析可以从多个角度进行,应用层面,行业层面,小到个人体重管理,大到国家国际战略决策,都可以阐述数据价值。这篇文章,主要是从数据关系和处理方法角度来看数据有哪些价值,以及为实现这些价值,需要做哪些准备和之前遇到的一些坑。
第一层:孤立数据
孤立数据,也可以看成是一个单点数据,其实就是最基本的表示一个状态或者一个记录。这种数据当然也是有价值的,比如:多个孤立的数据可以刻画一个具体的事物,一个人,一个企业等等,都可以通过单点的数据来进行基本描述。
孤立数据是一切数据分析的前提。对于孤立数据,我想表达的一个思考就是,尽可能的标准化。在数据产品设计的时候,或者在数据表的开发时,就需要讲这些孤立的数据定义青清楚。那个字段,通过哪种标识方式,代表哪个含义。同时这种定义,越广泛的范围采用,孤立数据的价值越大。比如:男/女 这种性别定义就非常简单,估计在全球范围内,都可以通用。
第二层:统计数据
我们在大学时代所学的统计学,概率论基本都是对数据的统计处理方法。统计数据是对一定时间或空间维度的数据进行分布计算,在此基础上,发现一些规律和特征,同时依照这种规律进行未来的预测。
最近有个很有意思的现象,国家在严格控制房产价格,各地政府为了保住乌纱帽,无不在统计数据上做文章,抑制中心地区的高价房出售,同时又大量放出郊区低价房。结果不到一个月,全国房价上涨得到有效控制,有些城市还出现大幅下跌。于是,各地官媒喜大普奔,报道房价下跌,政府有功。
“统计数据会撒谎”也是一个大多数人的认识。我们在应用统计数据的时候,首先需要定义如何统计,统计的目标和价值衡量标准在哪里?
比如:我想看下一个月之内,会员在某一个场景下各个时段的操作频次。这个时候就要问一下自己,一个月的数据是否能真实的反应你所想要的市场规律,是不是要扩大到一个季度或者一年。同时如果你是想分析用户转化,那么是不是多加几个场景纵向比较,以确认在哪个场景去投入更多资源等等。
第三层:关联数据
关联数据就开始深入到多维度上面去了,对一个主体的多维数据进行计算,以发现维度之间的关系,是互相促进的,还是互相抑制的。最优组合点以及价值临近点在哪里?
作为数据挖掘的一个重要方法,关联分析在推进系统里面使用很多。关联数据,可以有效的进行服务打包,商品打包。从海量的销售数据中进行关联数据分析,可以发现很奇特的组合。比如有段时间,我在分析会员来电情况,我们会发现,询问A问题的用户,通常会在电话结束后进行B操作,这种关联性,然我们优化了服务流程,在同类用户中,我们通过对A类来电进行B类服务的推荐,很好的进行了服务推广。达到非常好的效果。
第四层:智能数据
智能数据,就是指通过复杂的机器学习算法进行计算得出的数据,这种数据有时候是无法解释其内在原因的,但是智能化是未来的方向,并且速度越来越快。
我所理解的智能数据,是通过大量的数据训练,来实现内在模式的底层规律建设,在此基础上,对新数据的判断和结果产出。就比如最近很热门的Master 大战人类围棋高手,就是在Master进行了大量围棋基本规则定义,以及无数围棋落子模式训练后,形成的一种具有自我判断和计算意识的围棋模式。它之所以能战胜,更多胜在其计算能力和学习深度上面。比人类有了更多层的预测,并在此基础上判断了每一步的胜率。
智能数据是未来进行决策辅助的重要环节,它将像一个先知一样,协助人类预测未来,警示我们在现有模型下的发展结果。从这个角度上看,恐惧大可不必。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 本课程 ...
2025-07-28CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-28PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-28t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-28PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21