
SPSS分析技术:描述统计;了解手中的数据,从这里开始
无论是总体数据还是样本数据,描述统计都是了解它们的第一步,因为了解数据是进行进一步数据分析的基础。在统计基础文章中介绍过,描述数据可以从三个维度进行:集中趋势描述,离散程度描述和分布形态描述。每个描述维度都有相应的描述统计量,例如,描述集中趋势可以通过平均值、众数等统计量来展示;通过标准差、方差、最大值、最小值和范围等统计量来描述数据的离散程度;通过峰度和偏度来指示数据的分布形态。
SPSS-描述统计
SPSS将描述数据三个维度的所有统计量都整合进入【描述统计】菜单,能够非常方便的对定距数据进行描述,从而帮助分析者快速的了解数据,为进一步的数据分析打下坚实的基础。下图是SPSS的【描述统计】的统计量选择菜单:
从图中可知,该菜单提供了三个维度的特征统计量供分析者进行选择。集中趋势指标是平均值;离散指标包括标准差、方差、最大值、最小值、范围、标准误差平均值;分布状况指标包括峰度和偏度。
除了以上描述性指标以外,SPSS描述统计功能还能够将分析数据转换成Z分数(普通正态分布转换成标准正态分布)。在下图的左下角有一行小字:将标准化值另存为变量,如果将这行小字选中,则在原始数据表中将新生成一列由原始数据转换成的Z分数。
需要强调,只有服从正态分布的数据转换成标准正态分布才有意义。普通正态分布转换成标准正态分布后,原始数据在标准正态分布中所处的位置即为Z分数。Z分数的计算公式就是普通正态分布转换为标准正太分布的公式:
案例分析
现在有一份关于大学生网络使用情况的调查问卷,收集了100份有效回复。部分问卷和收集数据如下图所示。我们以其中的年龄变量为例,说明如何用SPSS提供的描述统计功能了解问卷回答者年龄的情况。
(例题数据文件已经上传到QQ群,群号文章底部温馨提示,需要的朋友可以前往下载)
分析步骤
1、从QQ群中下载问卷数据。打开数据后,选择菜单【分析】-【描述统计】-【描述】,打开描述统计对话框,如下图所示,将【感受1】到【感受10】选入【变量】,并选左下方的【将标准化得分另存为变量】。
2、点击【选项】按钮,在跳出的对话框中,选择所需的描述统计量。这里为了展示,将所有的统计量都选中。
3、点击确定,输出结果。
结果解释
1、描述性统计表。
每一行为选中的一个变量,每一列表示一个统计量。一目了然,分析者能够非常方便的从中了解不同变量的数据。
2、Z分数数据;
在数据视图最后部分,会将由原始数据转换得到的Z分数存储在这里。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04