京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析技术:描述统计;了解手中的数据,从这里开始
无论是总体数据还是样本数据,描述统计都是了解它们的第一步,因为了解数据是进行进一步数据分析的基础。在统计基础文章中介绍过,描述数据可以从三个维度进行:集中趋势描述,离散程度描述和分布形态描述。每个描述维度都有相应的描述统计量,例如,描述集中趋势可以通过平均值、众数等统计量来展示;通过标准差、方差、最大值、最小值和范围等统计量来描述数据的离散程度;通过峰度和偏度来指示数据的分布形态。
SPSS-描述统计
SPSS将描述数据三个维度的所有统计量都整合进入【描述统计】菜单,能够非常方便的对定距数据进行描述,从而帮助分析者快速的了解数据,为进一步的数据分析打下坚实的基础。下图是SPSS的【描述统计】的统计量选择菜单:
从图中可知,该菜单提供了三个维度的特征统计量供分析者进行选择。集中趋势指标是平均值;离散指标包括标准差、方差、最大值、最小值、范围、标准误差平均值;分布状况指标包括峰度和偏度。
除了以上描述性指标以外,SPSS描述统计功能还能够将分析数据转换成Z分数(普通正态分布转换成标准正态分布)。在下图的左下角有一行小字:将标准化值另存为变量,如果将这行小字选中,则在原始数据表中将新生成一列由原始数据转换成的Z分数。
需要强调,只有服从正态分布的数据转换成标准正态分布才有意义。普通正态分布转换成标准正态分布后,原始数据在标准正态分布中所处的位置即为Z分数。Z分数的计算公式就是普通正态分布转换为标准正太分布的公式:
案例分析
现在有一份关于大学生网络使用情况的调查问卷,收集了100份有效回复。部分问卷和收集数据如下图所示。我们以其中的年龄变量为例,说明如何用SPSS提供的描述统计功能了解问卷回答者年龄的情况。
(例题数据文件已经上传到QQ群,群号文章底部温馨提示,需要的朋友可以前往下载)
分析步骤
1、从QQ群中下载问卷数据。打开数据后,选择菜单【分析】-【描述统计】-【描述】,打开描述统计对话框,如下图所示,将【感受1】到【感受10】选入【变量】,并选左下方的【将标准化得分另存为变量】。
2、点击【选项】按钮,在跳出的对话框中,选择所需的描述统计量。这里为了展示,将所有的统计量都选中。
3、点击确定,输出结果。
结果解释
1、描述性统计表。
每一行为选中的一个变量,每一列表示一个统计量。一目了然,分析者能够非常方便的从中了解不同变量的数据。
2、Z分数数据;
在数据视图最后部分,会将由原始数据转换得到的Z分数存储在这里。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29