
供应链使用大数据的4大趋势
近年来,大数据成为一个时髦的词语,而这有着充分的理由。使用大型数据集进行分析和规划,供应链中的相关人士可以更快地对供应链中不同点的变化做出反应。
供应链服务咨询机构JDA公司行业战略副总裁Puneet Saxena说:“根据技术进步和提供的更多信息,将让我们重新想象认为是行之有效的供应链流程。”
1.实时跟踪
Saxena表示,物联网(IoT)使供应商能够跟踪实时离开他们的货架的商品,无论是仓库还是零售店。而通过来自社交来源(例如Facebook,Twitter),新闻,事件和天气的大数据,供应商可以更好地预测和规划未来的库存,而不是依赖历史数据。例如,进行周末促销的商店可以实时跟踪销售,而不是每天一次盘点。考虑到当前销售情况,以及社交媒体对促销和潜在天气事件的反应,供应商可以快速调整其供应和仓库发货计划。
Saxena说,直到几年前,零售商可以采用ERP(企业资源计划系统)跟踪订单,库存水平和人员配置数据。这些信息每天更新,或每隔几周更新一次。但现在物联网的传感器,卫星,雷达,智能手机,社交媒体可以提供大数据,获得飞机,远洋轮船,卡车,以及包裹货物的当前位置。Saxena补充说,通过这些信息,软件系统知道哪些卡车正朝着暴风雪区域行进,并且结合天气预报数据,供应商可以调整预测并发送新的到达时间。如果一辆卡车迟到,供应商可以从另一个仓库补给或加快装运。利用更好的技术,诸如OU Kosher公司不再需要使用传真和电话跟踪发货。该公司将其原料和成品进行Kosher认证,跟踪产品行踪,如豆油从加工厂到包装或最终产品。
这可能意味着OU Kosher公司在爱荷华的工厂生产出一批大豆油,通过货车运送到新奥尔良港口的储存罐,将其转移到一条远洋货船的集装箱之后,通过卡车运到工厂,通过大豆油来生产产品中。每当大豆油移动或运输时,OUKosher公司就会知道,并添加一个新的数据集,OUKosher的高级代表Smolensky说。“它必须实时完成,以保持生产持续进行,”他说。“以前都是通过电话,传真和实物的文件才得做到这样的流程。”
2.供应商采购
维护大数据集允许企业更容易地跟踪他们的供应商,并快速做出改变。Smolensky说,OU Kosher公司监控8,500家工厂,生产80万件经过Kosher认证的产品。为了做到这一点,他们监测175万种成分。当在其监管下的一家工厂失去了Kosher认证时,OU Kosher公司就会立即提醒那些使用受影响的原料的企业,因为继续使用会使生产的产品不合格。
“我们的系统允许我们使用有问题的材料即时跟踪所有设施,我们可以与他们联系,有变化时将会提醒他们。”Smolensky说。他们还可以告知这些设施使用受影响的原料的截止日期,并从其数据库中提供可用的替代品。而其他制造商也在使用类似的数据库。
3.客户细分
通过使用客户数据,零售商可以对买家和市场进行细分,为他们提供定制的产品和服务。
Saxeny说,软件可以帮助企业将客户细分为人物角色,通过购买习惯来定制供应链,例如早期采用者或有价值的顾客。使用大数据,企业还可以根据市场调整供应链,为每个商店提供他们的买家感兴趣的特定项目。虽然这不是零售商的一个新概念,但是通过大数据,有大量的信息可用,可以更具体地解析。
Smolensky说,他的一家杂货店客户使用大数据重新设计他们的商店,使用扫描仪的UPC代码数据。看到Kosher客户的更高的结帐价值,商店意识到有一个重大的上升空间,以满足更多的社区。商店增加了额外的Kosher认证的食品通道,以及Kosher肉店,熟食店,面包店和餐馆部门。“商店开始成为Kosher认证购物者的主要目的地,所有这一切都基于对消费者数据的跟踪。”斯摩棱斯克说。
4.明智地使用大数据
虽然大数据很重要,但它不应该是整体决策者。格鲁斯特恩德科特大学管理计划和组织领导中心主任Richard Weissman说,“供应链仍然是通过工作人员实现的业务,”他说。“业务成功最终将取决于工作人员,数据不会取代工作人员。”
他说,“数据不会在半夜打电话给企业的供应商,数据不会重新补充货架,虽然数据可能为企业提供洞察力。”大数据如今有了一些炒作的成分,但它的存在是为了推动所有的供应变化的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25