京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在金融和贸易中的作用
如今,无论人们所正在寻找的行业或业务,都很难将主要业务决策与大数据分开。当涉及到金融和贸易行业时,大数据的影响将会每天都能感受得到,这是一个事实。
影响金融和贸易行业的大数据三种方式
金融和交易一直依赖于强大的数据和准确的决策成功的投入。但当人们进入2017年,大数据正在从内而外彻底改变金融和贸易行业,将变得越来越清楚。
以下是一些需要详细讨论的特定主题。
1.技术分析
“金融技术分析是价格和价格行为的研究,使用图表作为主要工具。”高级市场战略家JeffreyFriedman指出,“现代技术分析包括价格的趋势性,价格折扣,所有已知的信息,移动平均线,价格上的容量映射变化,以及支持和阻力水平的识别等原则。”
任何交易策略的核心是强大的技术分析,映射最可能的回报率和具体结果将发生的概率。随着大数据的增长,技术分析的准确性已经提高。因此,交易者发现他们的数量更加一致,因此,他们能够降低风险。
然而,我们刚刚达到一个点,高频交易(HFT)公司加入了这一点。正如行业专家GregMacSweeney承认的那样,“交易业务中的大数据主题经常遇到嘲笑或窃笑,因为HFT玩家依赖于微秒延迟,并且利用大数据通常意味着在可接受的指标之外增加处理时间。”
这是一种缓慢变化,但HFT公司意识到速度不是一切。能够操纵数据,并找到明显的优势是一个非常有益的区分因素。
2.实时分析
如果你熟悉交易算法,那么你就会明白它与大数据的同义性。投资者TrevirNath说:“自动化过程使计算机程序能够以人类交易者无法实现的速度和频率执行金融交易。在数学模型中,算法交易提供以最佳可能的价格执行的交易,及时的交易布置,并减少由于行为因素导致的人工错误。
虽然技术分析是HFT公司的主要焦点,实时分析有潜力改变个人投资者的游戏,他们寻找与大型组织相同的强大的洞察力和访问。
关于算法交易最令人难以置信的事情是,实际上没有限制。可以使用非结构化数据和结构化数据创建算法。这意味着他们可以考虑社交媒体活动,股票数据和实时新闻,以做出直观的决策,考虑情境因素。随着这些算法的调整,行业正在看到大量的“机器人顾问”,他们通常比他们的人类同行更加聪明。
3.机器学习
大数据不仅导致形成强大的算法。它还协助机器学习的增长,这最终代表了技术的最大潜力。
通过机器学习,算法不断地提供数据,通过从过去的错误中学习,逻辑上根据过去的结果推断出新的结论,并创建基于成千上万个独特因素的新技术,随着时间的推移实现更加智能化。
人们距离拥有完美的机器提供100%准确的见解还有很长的路要走,但是人们越来越接近一个投资者或交易者做出的每一个决定,这都基于数百万个数据点的世界,这是一件好事。
大数据的作用越来越大
人们几乎没有触及大数据潜力的表面,,以及它如何能够更好地影响金融和交易。在未来的几个月和几年里,人产可以期望以更多的方式感受到影响。
而目前的技术分析,实时分析,以及机器学习只是一个开端。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28