京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言中的t检验
问题
在R中,我们如何检验从总体中抽样得到的两组样本是否有不同的均值,或是通过总体中的某一组样本检验总体均值与某一理论均值间的差异。
指南
示例数据 我们选择内置的sleep数据集作为示例数据。
接下来,我们将sleep数据集处理为宽数据;在之前发布的教程中,我们曾谈到过数据集长宽转换的方法(R语言行动指南-36:长数据与宽数据的转换)。
两组数据的对比:独立双样本t检验
首先假设我们的两组数据完全由独立抽样得来;为了达成这个目的,我们暂且忽略掉ID这个变量的存在。
t.test函数可以直接用于检验像sleep这样的长数据,在下面的例子中,列extra中记录着用于检验的数值,而列group则为样本的分组依据;如果数据没有以数据框形式存储,我们同样可以通过指定两个独立的向量来完成这一操作。
默认地,t.test不会假设样本具有相同的方差,因此该函数默认地调用Welch t检验方法而不是student t检验。可以看到在上文的Welch t检验中,自由度df=17.776,这是由于方法内对于可能存在的非均等方差的调整。如果我们要调用student t检验方法,那么我们需要设置参数var.equal=TRUE。
配对样本t检验
有时需要我们检验的数据可能是同一个实验对象在实验前后的某一关键指标数值,或是相互匹配的两组对象在进行不同实验之后的数值反应,也就是说,我们得到的两组样本数据间具有某种配对关系。此时,我们可以通过配对样本t检验的方式对其进行检验。
同样的,在上文中我们提及了t-test函数可以兼用于一个带有分组变量的数据框或是两个独立的向量。在配对样本中,样本的配对关系取决于其对应的位置。如果我们的数据集为包含分组变量的数据框,那么程序将默认group=1的数据行中的第一行与group=2的数据行中的第一行相互匹配。所以我们需要特别注意数据的排列顺序并确保其中没有缺失值,否则样本间的配对就不得不被打破。在下面的例子中,我们运用group和ID两个变量来确保数据排序的正确。
配对t检验的实质等同于检验每组相互配对的样本数据的差值的总体均值是否为0。(详情可见下文中单样本t检验的内容)
样本与外生总体均值的对比:单样本t检验
假设现在我们的目的为检验列extra数据对应的总体均值是否为0,在下面的例子中,我们暂时忽略了变量group与变量ID。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12