
R语言中的几类高效函数
在执行R语言任务时,一个提高执行效率的思路就是尽量避免使用循环语句,否则你的工作将变的缓慢低效。事实上,我们是可以有办法使用一些较高级的函数来尽量避免使用循环工作的。下面本文将介绍常见的几种高效函数。
目录
1.apply函数
2.lapply函数
3.sapply函数
4.tapply函数
5.sweep函数
6.column函数和row函数
1)apply函数
apply函数主要应用在一个数组或者矩阵上,通过给定的函数,并根据指定的计算方向(按行或按列),以该方向的数组为输入对象,反回计算结果,并将结果存储于一个数组或向量中。
apply(array, margin, function, ...)
首先定义一个矩阵data
data <- matrix(rep(seq(4), 4), ncol = 4)
data
[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 2 2 2 2
[3,] 3 3 3 3
[4,] 4 4 4 4
#先根据行求和,其中1为指定按行计算(1为行,2为列),sum为指定的function
apply(data, 1, sum)
[1] 4 8 12 16
#根据列求和,其中2为按列计算
apply(data, 2, sum)
[1] 10 10 10 10
#使用自定义函数,首先定义函数myfun
myfun <- function(x){
+ sum(x) + 2
+ }
#根据自定义函数,使用apply函数计算
apply(data, 1, myfun)
[1] 6 10 14 18
#自定义函数还可以写在apply函数内部,不过需要注意,没有大括号
apply(data, 1, function(x) sum(x) + 2)
[1] 6 10 14 18
#更通用的,可以将函数写出如下形势
apply(data, 1, function(x, y) sum(x) + y, y=2)
[1] 6 10 14 18
2)lapply函数
lapply用于对给定的数据,分别对其中的元素按指定的函数计算,并返回一个list。对于数据框来说,lapply函数显得极为友好,在data.frame中,每个变量可以看做是一个元素,因此lapply应用于data.frame时,可以同时对所有变量按指定函数进行计算。
#首先构造一个数据框
data.df<-data.frame(data)
> data.df
X1 X2 X3 X4
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
#对数据框所有变量进行求和,返回每个变量的结果,存储形式为list。
lapply(data.df, sum)
$X1
[1] 10
$X2
[1] 10
$X3
[1] 10
$X4
[1] 10
#此外,还可以将传入的函数改成自定义的函数。要注意,函数形式没有大括号。
y1 <- lapply(data.df, function(x, y) sum(x) + y, y = 5)
y1
$X1
[1] 15
$X2
[1] 15
$X3
[1] 15
$X4
[1] 15
#使用lappy代替循环函数
unlist(lapply(1:5, function(i) print(i) ))
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 1 2 3 4 5
#对比一下for循环结果就算结果,发现是一致的
for(i in 1:5) print(i)
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
3)sapply函数
sapply函数与lapply函数类似,主要输入的参数都是数据和函数,但sapply与lapply不同的是sapply返回的是向量,而lapply返回的是一个list。并且sapply还存在第三个参数simplify,当silmplify为FALSE时,那么sapply返回的结果和lapply一致;当silmplify为TRUE时,sapply返回的结果为一个向量或者矩阵;此外还可以设定其它格式。
sapply(list, function, ..., simplify)
y <- sapply(data.df, function(x, y) sum(x) + y, y = 5)
y
X1 X2 X3 X4
15 15 15 15
is.vector(y)
[1] TRUE #返回的结果是一个向量
#定义simply=F,此时返回的结果胃list,效果和apply一样。
y <- sapply(data.df, function(x, y) sum(x) + y, y = 5,simplify = F)
y
$X1
[1] 15
$X2
[1] 15
$X3
[1] 15
$X4
[1] 15
class(y)
[1] "list"
is.list(y)
[1] TRUE#返回结果为list
4)tapply函数
tapply用于对数据进行分组计算,类似于SQL中的group by。tapply需要传入三个参数,第一个是数据,第二个是数据的分组,第三个参数是指定的计算函数。
data.df<-data.frame(x=runif(10),group1=rep(1:5,2),group2=rep(1:2,5))
data.df
x group1 group2
1 0.68180046 1 1
2 0.72726914 2 2
3 0.33735976 3 1
4 0.48212394 4 2
5 0.04234556 5 1
6 0.88701919 1 2
7 0.53946995 2 1
8 0.01295496 3 2
9 0.47062069 4 1
10 0.87079649 5 2
tapply(data.df$x, data.df$group1, mean)
1 2 3 4 5
0.4926077 0.7726152 0.6058755 0.6110971 0.3074988
#此处还可以传入两个分组的计算结果
tapply(data.df$x, list(data.df$group1,data.df$group2), mean)
1 2
1 0.68180046 0.88701919
2 0.53946995 0.72726914
3 0.33735976 0.01295496
4 0.47062069 0.48212394
5 0.04234556 0.87079649
5)sweep函数
sweep函数用于对给定的输入数据做批量的计算,主要参数有数据、统计方向、计算参数、计算函数。其中统计方向可取1或2,取1表示在行的方向上计算,2表示在列的方向上计算。计算函数为加减乘除等算是,默认为减法'-'。
data<-matrix(runif(20),5)
data.df<-data.frame(data)
data.df
X1 X2 X3 X4
1 0.09248257 0.4358975 0.1884430 0.1212183
2 0.83091974 0.2388490 0.8377123 0.6140257
3 0.15849016 0.2286257 0.8577217 0.9877683
4 0.86437393 0.2771434 0.5302898 0.1608113
5 0.43098913 0.5906199 0.1117341 0.2846628
#将数据按行计算,每行分别减去各行的最大值
sweep(data.df,1,apply(data.df,1,max),'-')
X1 X2 X3 X4
1 -0.343414887 0.0000000 -0.2474544 -0.3146792
2 -0.006792557 -0.5988633 0.0000000 -0.2236865
3 -0.829278179 -0.7591426 -0.1300467 0.0000000
4 0.000000000 -0.5872305 -0.3340842 -0.7035627
5 -0.159630747 0.0000000 -0.4788858 -0.3059571
6)column函数和row函数
还有一些函数也是基于行和列进行统计计算的,如对列进行计算的有colMeans和colSums;对行计算的rowMeans和rowSums。
data.df
X1 X2 X3 X4
1 0.09248257 0.4358975 0.1884430 0.1212183
2 0.83091974 0.2388490 0.8377123 0.6140257
3 0.15849016 0.2286257 0.8577217 0.9877683
4 0.86437393 0.2771434 0.5302898 0.1608113
5 0.43098913 0.5906199 0.1117341 0.2846628
#对列求平均
colMeans(data.df)
X1 X2 X3 X4
0.4754511 0.3542271 0.5051802 0.4336973
#对列求和
X1 X2 X3 X4
2.377256 1.771135 2.525901 2.168486
#对行求和
rowSums(data.df)
[1] 0.8380414 2.5215068 2.2326058 1.8326183 1.4180059
#对行求平均
rowMeans(data.df)
[1] 0.2095103 0.6303767 0.5581515 0.4581546 0.3545015
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27