京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用R建立岭回归和lasso回归
1 分别使用岭回归和Lasso解决薛毅书第279页例6.10的回归问题
例6.10的问题如下:
输入例题中的数据,生成数据集,并做简单线性回归,查看效果 cement <- data.frame(X1 = c(7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10), X2 = c(26, 29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68), X3 = c(6, 15, 8, 8, 6, 9, 17, 22, 18, 4, 23, 9, 8), X4 = c(60, 52, 20, 47, 33, 22, 6, 44, 22, 26, 34, 12, 12), Y = c(78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4)) cement ## X1 X2 X3 X4 Y ## 1 7 26 6 60 78.5 ## 2 1 29 15 52 74.3 ## 3 11 56 8 20 104.3 ## 4 11 31 8 47 87.6 ## 5 7 52 6 33 95.9 ## 6 11 55 9 22 109.2 ## 7 3 71 17 6 102.7 ## 8 1 31 22 44 72.5 ## 9 2 54 18 22 93.1 ## 10 21 47 4 26 115.9 ## 11 1 40 23 34 83.8 ## 12 11 66 9 12 113.3 ## 13 10 68 8 12 109.4 lm.sol <- lm(Y ~ ., data = cement) summary(lm.sol) ## ## Call: ## lm(formula = Y ~ ., data = cement) ## ## Residuals: ## Min 1Q Median 3Q Max ## -3.175 -1.671 0.251 1.378 3.925 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 62.405 70.071 0.89 0.399 ## X1 1.551 0.745 2.08 0.071 . ## X2 0.510 0.724 0.70 0.501 ## X3 0.102 0.755 0.14 0.896 ## X4 -0.144 0.709 -0.20 0.844 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 2.45 on 8 degrees of freedom ## Multiple R-squared: 0.982, Adjusted R-squared: 0.974 ## F-statistic: 111 on 4 and 8 DF, p-value: 4.76e-07 # 从结果看,截距和自变量的相关系数均不显著。 # 利用car包中的vif()函数查看各自变量间的共线情况 library(car) vif(lm.sol) ## X1 X2 X3 X4 ## 38.50 254.42 46.87 282.51 # 从结果看,各自变量的VIF值都超过10,存在多重共线性,其中,X2与X4的VIF值均超过200. plot(X2 ~ X4, col = "red", data = cement)
接下来,利用MASS包中的函数lm.ridge()来实现岭回归。下面的计算试了151个lambda值,最后选取了使得广义交叉验证GCV最小的那个。 library(MASS) ## ## Attaching package: 'MASS' ## ## The following object is masked _by_ '.GlobalEnv': ## ## cement ridge.sol <- lm.ridge(Y ~ ., lambda = seq(0, 150, length = 151), data = cement, model = TRUE) names(ridge.sol) # 变量名字 ## [1] "coef" "scales" "Inter" "lambda" "ym" "xm" "GCV" "kHKB" ## [9] "kLW" ridge.sol$lambda[which.min(ridge.sol$GCV)] ##找到GCV最小时的lambdaGCV ## [1] 1 ridge.sol$coef[which.min(ridge.sol$GCV)] ##找到GCV最小时对应的系数 ## [1] 7.627 par(mfrow = c(1, 2)) # 画出图形,并作出lambdaGCV取最小值时的那条竖直线 matplot(ridge.sol$lambda, t(ridge.sol$coef), xlab = expression(lamdba), ylab = "Cofficients", type = "l", lty = 1:20) abline(v = ridge.sol$lambda[which.min(ridge.sol$GCV)]) # 下面的语句绘出lambda同GCV之间关系的图形 plot(ridge.sol$lambda, ridge.sol$GCV, type = "l", xlab = expression(lambda), ylab = expression(beta)) abline(v = ridge.sol$lambda[which.min(ridge.sol$GCV)])
par(mfrow = c(1, 1)) # 从上图看,lambda的选择并不是那么重要,只要不离lambda=0太近就没有多大差别。 # 下面利用ridge包中的linearRidge()函数进行自动选择岭回归参数 library(ridge) mod <- linearRidge(Y ~ ., data = cement) summary(mod) ## ## Call: ## linearRidge(formula = Y ~ ., data = cement) ## ## ## Coefficients: ## Estimate Scaled estimate Std. Error (scaled) t value (scaled) ## (Intercept) 83.704 NA NA NA ## X1 1.292 26.332 3.672 7.17 ## X2 0.298 16.046 3.988 4.02 ## X3 -0.148 -3.279 3.598 0.91 ## X4 -0.351 -20.329 3.996 5.09 ## Pr(>|t|) ## (Intercept) NA ## X1 7.5e-13 *** ## X2 5.7e-05 *** ## X3 0.36 ## X4 3.6e-07 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Ridge parameter: 0.01473, chosen automatically, computed using 2 PCs ## ## Degrees of freedom: model 3.01 , variance 2.84 , residual 3.18 # 从模型运行结果看,测岭回归参数值为0.0147,各自变量的系数显著想明显提高(除了X3仍不显著) 最后,利用Lasso回归解决共线性问题 library(lars) ## Loaded lars 1.2 x = as.matrix(cement[, 1:4]) y = as.matrix(cement[, 5]) (laa = lars(x, y, type = "lar")) #lars函数值用于矩阵型数据 ## ## Call: ## lars(x = x, y = y, type = "lar") ## R-squared: 0.982 ## Sequence of LAR moves: ## X4 X1 X2 X3 ## Var 4 1 2 3 ## Step 1 2 3 4 # 由此可见,LASSO的变量选择依次是X4,X1,X2,X3 plot(laa) #绘出图
summary(laa) #给出Cp值 ## LARS/LAR ## Call: lars(x = x, y = y, type = "lar") ## Df Rss Cp ## 0 1 2716 442.92 ## 1 2 2219 361.95 ## 2 3 1918 313.50 ## 3 4 48 3.02 ## 4 5 48 5.00 # 根据课上对Cp含义的解释(衡量多重共线性,其值越小越好),我们取到第3步,使得Cp值最小,也就是选择X4,X1,X2这三个变量。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12