
用R建立岭回归和lasso回归
1 分别使用岭回归和Lasso解决薛毅书第279页例6.10的回归问题
例6.10的问题如下:
输入例题中的数据,生成数据集,并做简单线性回归,查看效果 cement <- data.frame(X1 = c(7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10), X2 = c(26, 29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68), X3 = c(6, 15, 8, 8, 6, 9, 17, 22, 18, 4, 23, 9, 8), X4 = c(60, 52, 20, 47, 33, 22, 6, 44, 22, 26, 34, 12, 12), Y = c(78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4)) cement ## X1 X2 X3 X4 Y ## 1 7 26 6 60 78.5 ## 2 1 29 15 52 74.3 ## 3 11 56 8 20 104.3 ## 4 11 31 8 47 87.6 ## 5 7 52 6 33 95.9 ## 6 11 55 9 22 109.2 ## 7 3 71 17 6 102.7 ## 8 1 31 22 44 72.5 ## 9 2 54 18 22 93.1 ## 10 21 47 4 26 115.9 ## 11 1 40 23 34 83.8 ## 12 11 66 9 12 113.3 ## 13 10 68 8 12 109.4 lm.sol <- lm(Y ~ ., data = cement) summary(lm.sol) ## ## Call: ## lm(formula = Y ~ ., data = cement) ## ## Residuals: ## Min 1Q Median 3Q Max ## -3.175 -1.671 0.251 1.378 3.925 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 62.405 70.071 0.89 0.399 ## X1 1.551 0.745 2.08 0.071 . ## X2 0.510 0.724 0.70 0.501 ## X3 0.102 0.755 0.14 0.896 ## X4 -0.144 0.709 -0.20 0.844 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 2.45 on 8 degrees of freedom ## Multiple R-squared: 0.982, Adjusted R-squared: 0.974 ## F-statistic: 111 on 4 and 8 DF, p-value: 4.76e-07 # 从结果看,截距和自变量的相关系数均不显著。 # 利用car包中的vif()函数查看各自变量间的共线情况 library(car) vif(lm.sol) ## X1 X2 X3 X4 ## 38.50 254.42 46.87 282.51 # 从结果看,各自变量的VIF值都超过10,存在多重共线性,其中,X2与X4的VIF值均超过200. plot(X2 ~ X4, col = "red", data = cement)
接下来,利用MASS包中的函数lm.ridge()来实现岭回归。下面的计算试了151个lambda值,最后选取了使得广义交叉验证GCV最小的那个。 library(MASS) ## ## Attaching package: 'MASS' ## ## The following object is masked _by_ '.GlobalEnv': ## ## cement ridge.sol <- lm.ridge(Y ~ ., lambda = seq(0, 150, length = 151), data = cement, model = TRUE) names(ridge.sol) # 变量名字 ## [1] "coef" "scales" "Inter" "lambda" "ym" "xm" "GCV" "kHKB" ## [9] "kLW" ridge.sol$lambda[which.min(ridge.sol$GCV)] ##找到GCV最小时的lambdaGCV ## [1] 1 ridge.sol$coef[which.min(ridge.sol$GCV)] ##找到GCV最小时对应的系数 ## [1] 7.627 par(mfrow = c(1, 2)) # 画出图形,并作出lambdaGCV取最小值时的那条竖直线 matplot(ridge.sol$lambda, t(ridge.sol$coef), xlab = expression(lamdba), ylab = "Cofficients", type = "l", lty = 1:20) abline(v = ridge.sol$lambda[which.min(ridge.sol$GCV)]) # 下面的语句绘出lambda同GCV之间关系的图形 plot(ridge.sol$lambda, ridge.sol$GCV, type = "l", xlab = expression(lambda), ylab = expression(beta)) abline(v = ridge.sol$lambda[which.min(ridge.sol$GCV)])
par(mfrow = c(1, 1)) # 从上图看,lambda的选择并不是那么重要,只要不离lambda=0太近就没有多大差别。 # 下面利用ridge包中的linearRidge()函数进行自动选择岭回归参数 library(ridge) mod <- linearRidge(Y ~ ., data = cement) summary(mod) ## ## Call: ## linearRidge(formula = Y ~ ., data = cement) ## ## ## Coefficients: ## Estimate Scaled estimate Std. Error (scaled) t value (scaled) ## (Intercept) 83.704 NA NA NA ## X1 1.292 26.332 3.672 7.17 ## X2 0.298 16.046 3.988 4.02 ## X3 -0.148 -3.279 3.598 0.91 ## X4 -0.351 -20.329 3.996 5.09 ## Pr(>|t|) ## (Intercept) NA ## X1 7.5e-13 *** ## X2 5.7e-05 *** ## X3 0.36 ## X4 3.6e-07 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Ridge parameter: 0.01473, chosen automatically, computed using 2 PCs ## ## Degrees of freedom: model 3.01 , variance 2.84 , residual 3.18 # 从模型运行结果看,测岭回归参数值为0.0147,各自变量的系数显著想明显提高(除了X3仍不显著) 最后,利用Lasso回归解决共线性问题 library(lars) ## Loaded lars 1.2 x = as.matrix(cement[, 1:4]) y = as.matrix(cement[, 5]) (laa = lars(x, y, type = "lar")) #lars函数值用于矩阵型数据 ## ## Call: ## lars(x = x, y = y, type = "lar") ## R-squared: 0.982 ## Sequence of LAR moves: ## X4 X1 X2 X3 ## Var 4 1 2 3 ## Step 1 2 3 4 # 由此可见,LASSO的变量选择依次是X4,X1,X2,X3 plot(laa) #绘出图
summary(laa) #给出Cp值 ## LARS/LAR ## Call: lars(x = x, y = y, type = "lar") ## Df Rss Cp ## 0 1 2716 442.92 ## 1 2 2219 361.95 ## 2 3 1918 313.50 ## 3 4 48 3.02 ## 4 5 48 5.00 # 根据课上对Cp含义的解释(衡量多重共线性,其值越小越好),我们取到第3步,使得Cp值最小,也就是选择X4,X1,X2这三个变量。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29