京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2017年关于大数据方面的6个预测
市场已经从希望学习和了解新的大数据技术的技术人员,进化到想要了解新项目、新公司以及最重要的,组织如何从这些技术上真实获益的客户。根据John Schroeder,MapR Technologies, Inc.的执行主席和创始人的说法,大数据部署的加速主因已经转移到了数据的价值上。
John总结了他对2017年市场趋势的看法,形成以下六个主要的预测:
1. 人工智能(AI)重新流行
在上世纪60年代,Ray Solomonoff奠定了人工智能的数学理论基础,介绍了归纳推理和预测的通用贝叶斯方法。1980年,美国人工智能协会第一次全国会议(AAAI)于斯坦福举行,标志了理论在软件开发中的应用。AI现在又回到主流的讨论中,引发了机器智能、机器学习、神经网络、认知计算等一系列流行语。为什么AI有年轻化的趋势?这里面有个三V想法:速度,变化和体量。
可以利用现代和传统的处理模型来支持三V的平台可以横向扩展,提供高达传统平台10-20倍的成本效率。
谷歌已经记录了,简单的算法对大型数据集频繁执行,比其他方法使用较小的数据集产生的结果更好。我们将看到,将人工智能到用于高容量重复任务时具有最高价值,在这样的任务中,一致性比以主观误差和人力成本为代价来获得人类直观的监督来说,更加有效。
2. 大数据带来管理优势或竞争优势
在2017年,管理与数据价值的拔河将是核心焦点。企业具有关于他们的客户和合作伙伴的大量信息。领先的组织将在正规化和非正规化的案例之间管理他们的数据。正规化的用例数据需要管理数据质量和血统,从而一个监管机构可以报告和跟踪源数据的转换。这是强制的和有必要的,但对于非正规化的用例较为受限,这样的用例包括客户360,或者,在更高的基数、实时和混合的结构化和非结构化能产生更有效结果的场景下,提供服务。
3. 公司专注于业务驱动的应用程序,以避免数据湖泊成为沼泽
在2017年,组织将从“建立它,它们就会来”的数据湖的方法,迁移到业务驱动的数据方法。今天的世界需要分析和操作能力,以实时在个例层面解决客户问题,处理索赔和设备接口。例如,任何电子商务网站必须提供个性化的建议和实时价格查询。
通过将分析与运营系统相结合,医疗机构必须处理有效的索赔和防止欺诈索赔。媒体公司目前通过设置机顶盒提供个性化内容。汽车制造商和拼车公司针对汽车和司机进行规模化的互操作。交付这些用例需要一个敏捷的平台,平台可以提供分析和业务处理的能力,以从额外的用例(从后端分析到前台业务)中增加价值。在2017年,组织将积极推进超越“问问题”的方法和架构,以推动初始和长期的商业价值。
4. 数据敏捷性区分赢家和输家
当DevOps提供持续交付时,软件开发已经变得敏捷。在2017年,处理和分析模型将会继续发展,提供与组织实现数据敏捷类似级别的敏捷。在上下文中理解数据并采取相应业务行动的能力,是竞争优势的来源,而不是简单地拥有一个大数据湖。
敏捷处理模型的出现将使相同的数据实例支持批处理分析、交互分析、全局消息、数据库和基于文件的模型。当一个单一的数据实例可以支持更广泛的工具集时,更灵活的分析模型也将被启用。最终的结果是一个灵活的开发和应用平台,支持最广泛的处理和分析模型。
5. 区块链转变精选的金融服务应用
在2017年,将在金融服务中有精选的、转型的用例,这些用例的出现将对数据存储和交易处理的方式具有广泛的影响。区块链提供了一个全球性的分布式总账,这将改变数据的存储和交易处理的方式。区块链运行在分布在世界各地的计算机上,链可以被全世界任何人看到。
交易被存储在块中,每个块均指向前一个块,每个块都打上了时间戳,并以一种不可改变方式存储数据。黑客无法破解的区块链,因为整个世界都能看到整个的区块链。区块链为消费者提供明显的效率。例如,客户不需要等待SWIFT交易,或担心中央数据中心泄漏的影响。对于企业来说,区块链能帮助节约成本,并提供了创造竞争优势的机会。
6. 机器学习最大化微服务(Microservice)的影响
今年我们将看到机器学习和微服务整合的更多案例。此前,微服务的部署都集中在轻量级的服务上,那些整合了机器学习的微服务通常被局限在应用于数据流瓶颈的“快速”数据集成。在2017年,我们会看到开发将转变为有状态应用程序,这些程序将使用大数据,以及使用基于大量的历史数据更好地理解新到达的数据流的机器学习方法。
“我们的预测深受领先的客户的影响,这些客户通过将分析整合进运营的用例而获得显著的商业价值,”Schroeder说 。“我们的客户对MapR融合数据平台的使用,为DevOps提供了敏捷性,在DevOps中他们可以广泛使用从Hadoop到Spark、SQL、NoSQL、文件和信息流等加工模型——任何当前和未来的,在私有云、公有云和混合云部署中的需求。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06