
2017年关于大数据方面的6个预测
市场已经从希望学习和了解新的大数据技术的技术人员,进化到想要了解新项目、新公司以及最重要的,组织如何从这些技术上真实获益的客户。根据John Schroeder,MapR Technologies, Inc.的执行主席和创始人的说法,大数据部署的加速主因已经转移到了数据的价值上。
John总结了他对2017年市场趋势的看法,形成以下六个主要的预测:
1. 人工智能(AI)重新流行
在上世纪60年代,Ray Solomonoff奠定了人工智能的数学理论基础,介绍了归纳推理和预测的通用贝叶斯方法。1980年,美国人工智能协会第一次全国会议(AAAI)于斯坦福举行,标志了理论在软件开发中的应用。AI现在又回到主流的讨论中,引发了机器智能、机器学习、神经网络、认知计算等一系列流行语。为什么AI有年轻化的趋势?这里面有个三V想法:速度,变化和体量。
可以利用现代和传统的处理模型来支持三V的平台可以横向扩展,提供高达传统平台10-20倍的成本效率。
谷歌已经记录了,简单的算法对大型数据集频繁执行,比其他方法使用较小的数据集产生的结果更好。我们将看到,将人工智能到用于高容量重复任务时具有最高价值,在这样的任务中,一致性比以主观误差和人力成本为代价来获得人类直观的监督来说,更加有效。
2. 大数据带来管理优势或竞争优势
在2017年,管理与数据价值的拔河将是核心焦点。企业具有关于他们的客户和合作伙伴的大量信息。领先的组织将在正规化和非正规化的案例之间管理他们的数据。正规化的用例数据需要管理数据质量和血统,从而一个监管机构可以报告和跟踪源数据的转换。这是强制的和有必要的,但对于非正规化的用例较为受限,这样的用例包括客户360,或者,在更高的基数、实时和混合的结构化和非结构化能产生更有效结果的场景下,提供服务。
3. 公司专注于业务驱动的应用程序,以避免数据湖泊成为沼泽
在2017年,组织将从“建立它,它们就会来”的数据湖的方法,迁移到业务驱动的数据方法。今天的世界需要分析和操作能力,以实时在个例层面解决客户问题,处理索赔和设备接口。例如,任何电子商务网站必须提供个性化的建议和实时价格查询。
通过将分析与运营系统相结合,医疗机构必须处理有效的索赔和防止欺诈索赔。媒体公司目前通过设置机顶盒提供个性化内容。汽车制造商和拼车公司针对汽车和司机进行规模化的互操作。交付这些用例需要一个敏捷的平台,平台可以提供分析和业务处理的能力,以从额外的用例(从后端分析到前台业务)中增加价值。在2017年,组织将积极推进超越“问问题”的方法和架构,以推动初始和长期的商业价值。
4. 数据敏捷性区分赢家和输家
当DevOps提供持续交付时,软件开发已经变得敏捷。在2017年,处理和分析模型将会继续发展,提供与组织实现数据敏捷类似级别的敏捷。在上下文中理解数据并采取相应业务行动的能力,是竞争优势的来源,而不是简单地拥有一个大数据湖。
敏捷处理模型的出现将使相同的数据实例支持批处理分析、交互分析、全局消息、数据库和基于文件的模型。当一个单一的数据实例可以支持更广泛的工具集时,更灵活的分析模型也将被启用。最终的结果是一个灵活的开发和应用平台,支持最广泛的处理和分析模型。
5. 区块链转变精选的金融服务应用
在2017年,将在金融服务中有精选的、转型的用例,这些用例的出现将对数据存储和交易处理的方式具有广泛的影响。区块链提供了一个全球性的分布式总账,这将改变数据的存储和交易处理的方式。区块链运行在分布在世界各地的计算机上,链可以被全世界任何人看到。
交易被存储在块中,每个块均指向前一个块,每个块都打上了时间戳,并以一种不可改变方式存储数据。黑客无法破解的区块链,因为整个世界都能看到整个的区块链。区块链为消费者提供明显的效率。例如,客户不需要等待SWIFT交易,或担心中央数据中心泄漏的影响。对于企业来说,区块链能帮助节约成本,并提供了创造竞争优势的机会。
6. 机器学习最大化微服务(Microservice)的影响
今年我们将看到机器学习和微服务整合的更多案例。此前,微服务的部署都集中在轻量级的服务上,那些整合了机器学习的微服务通常被局限在应用于数据流瓶颈的“快速”数据集成。在2017年,我们会看到开发将转变为有状态应用程序,这些程序将使用大数据,以及使用基于大量的历史数据更好地理解新到达的数据流的机器学习方法。
“我们的预测深受领先的客户的影响,这些客户通过将分析整合进运营的用例而获得显著的商业价值,”Schroeder说 。“我们的客户对MapR融合数据平台的使用,为DevOps提供了敏捷性,在DevOps中他们可以广泛使用从Hadoop到Spark、SQL、NoSQL、文件和信息流等加工模型——任何当前和未来的,在私有云、公有云和混合云部署中的需求。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04