京公网安备 11010802034615号
经营许可证编号:京B2-20210330
JAVA如何与R完美结合起来
为什么要用java调用R?
Java作为一个非常流行的编程语言,具有功能强大和简单易用两个特征。Java语言作为静态面向对象编程语言的代表,极好地实现了面向对象理论,允许程序员以优雅的思维方式进行复杂的编程。但是Java缺乏数据分析以及可视化的能力。但是R语言却是专门为统计而生,R语言近年来发展迅速,可以用来进行机器学习,数据挖掘,数据可视化。 为了弥补这种差距, 我们可以将JAVA与R结合起来,
今天我们来说两种方法,首先第一个,JAVA通过Rserve调用R语言。
一,环境
系统:win10
JDK:1.8
R:3.3.1
eclipse:luna
二.准备工作
在R软件里面安装Rserve包
install.packages("Rserve")
如果你已经安装了这个包就不需要这一步。如果安装过程没有报错就OK。接下来我们就要通过下面语句启动服务:
Rserve()
如果出现下面语句这表示服务已经启动好了:
Starting Rserve...
"D:\PROGRA~1\R\R-33~1.1\library\Rserve\libs\x64\Rserve.exe"
现在我们已经运行Rserve服务器,我们就可以在eclipse中创建一个Java程序,使用Rserve与R进行通信,并在Java代码中调用R的函数。
我创建里一个RserveProject的java工程,然后右击工程名—properties—Java Build Path—Librares—Add External Jar...加载REngine.jar和Rserve.jar两个jar包,我把R装在了D:\Program Files\下,所以那两个包在D:\Program Files\R\R-3.3.1\library\Rserve\java。大家根据自己的实际情况找找。

三.编写Java程序
在下面程序中,我分别直接调用了R中的函数,也调用自己的R脚本。
import org.rosuda.REngine.Rserve.RConnection;
import org.rosuda.REngine.Rserve.RserveException;
import org.rosuda.REngine.REXPMismatchException;;
public class Temp {
public static void main(String[] args) throws REXPMismatchException {
// TODO Auto-generated method stub
RConnection connection = null;
System.out.println("平均值");
try {
//创建对象
connection = new RConnection();
String vetor="c(1,2,3,4)";
connection.eval("meanVal<-mean("+vetor+")");
//System.out.println("the mean of given vector is="+mean);
double mean=connection.eval("meanVal").asDouble();
System.out.println("the mean of given vector is="+mean);
//connection.eval(arg0)
} catch (RserveException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
System.out.println("执行脚本");
try {
connection.eval("source('D:/myAdd.R')");
//此处路径也可以这样写D:\\\\myAdd.R
int num1=20;
int num2=10;
int sum=connection.eval("myAdd("+num1+","+num2+")").asInteger();
System.out.println("the sum="+sum);
} catch (RserveException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
connection.close();
}
}
结果为:
平均值
the mean of given vector is=2.5
执行脚本
the sum=30
其中myAdd.R代码如下:
myAdd<-function(x,y){
sum=x+y
return(sum)
}
四.Reserve的多线程
由于Rserve是以服务器的形式运行,那么它可以同时处理多个请求。 这也就意味着当我们使用命令启动Rserve的实例。
我们从R控制台启动Rserve实例,如下有三个实例。
Rserve(port=5011)
Rserve(port=5012)
Rserve(port=5013)
现在有了这3个独立的实例,这3个线程可以很容易地连接到这3个实例:
//线程1连接到在端口5011上运行的实例
RConnection connection = new RConnection("hostIP_or_hostName",5011);
//线程2连接到在端口5012上运行的实例
RConnection connection = new RConnection("hostIP_or_hostName",5012);
//线程3连接到在端口5013上运行的实例
RConnection connection = new RConnection("hostIP_or_hostName",5013);
第二种方法:
这是一种比较简单方便的方法,这次我们需要写一个简单的R语言脚本,然后通过运行这个R脚本,来打开Rserve服务。这样的话,我们每次运行Java程序之前就不用先打开R,再输入程序打开Rserve服务。这样是不是很简单方便。今天我们要用这种方法,和R语言,画一个简单的词云出来。
首先,我们建一个R脚本:
library(Rserve)
Rserve()</span>
我将它保存成Rserve.R文件,放在了这个目录下(MyScript这是我自己新建的文件夹): D:\Program Files\R\R-3.3.1\MyScript
提示:路径最后不要有中文字符,就是有的时候可能不识别,或包其他错误。
首先我们要导入 包,大家可以查看我的另一篇博文。我们新建一个类,用来初始化Rserve服务。代码如下
package rserve;
import javax.xml.transform.Source;
import org.rosuda.REngine.Rserve.RConnection;
import org.rosuda.REngine.Rserve.RserveException;
/**
* 启动Rserve服务
* @author henry wang
*
*/
public class Rservel {
private static String R_EXE_PATH="D:\\Program Files\\R\\R-3.3.1\\bin\\Rscript.exe";
private static String R_SCRIPT_PATH="D:\\Program Files\\R\\R-3.3.1\\MyScript\\Rserve.R";
public static RConnection getRConnection(){
try {
RConnection rConnection=new RConnection();
return rConnection;
} catch (RserveException e) {
// TODO: handle exception
System.out.println("正在启动Rserve服务......");
try {
Runtime rn=Runtime.getRuntime();
/*
* 不建议写成直接写成rn.exec("R_EXE_PATH R_SCRIPT_PATH"),
*如果这样学的画前面定义的R_EXE_PATH,R_SCRIPT_PATH会提示
* 这两个变量没有用到
* 运行也许会出错,提示错误如下:
* java.io.IOException: Cannot run program "D:\Program": CreateProcess error=2,
*系统找不到指定的文件。
*/
String[] commandArgs={R_EXE_PATH,R_SCRIPT_PATH};
rn.exec(commandArgs);
Thread.sleep(5000);
} catch (Exception e2) {
// TODO: handle exception
e2.printStackTrace();
}
return getRConnection();
}
}
}
说明:R_EXE_PATH 是Rscript.exe或者R.exe的路径,这两个都可以。R_SCRIPT_PATH是R脚本的路径。
package rserve;
import java.awt.Graphics;
import java.awt.Image;
import java.awt.MediaTracker;
import java.awt.Toolkit;
import javax.swing.JFrame;
import org.rosuda.REngine.REXP;
import org.rosuda.REngine.Rserve.RConnection;
public class WordCloud extends JFrame{
private static final long serialVersionUID=1L;
static Image img;
public static void main(String[] args) throws Exception{
// TODO Auto-generated method stub
WordCloud wc=new WordCloud();
REXP xp=wc.getRobj();//获得R对象
wc.PlotDemo(xp,wc);//错误
}
private REXP getRobj() throws Exception{
RConnection c=Rserve.getRConnection();
c.setStringEncoding("utf8");//设置字符编码
//返回R的版本
REXP Rservesion=c.eval("R.version.string");
System.out.println(Rservesion.asString());
System.out.println("\n----------绘图演示--------");
System.out.println("");
REXP xp=c.parseAndEval("jpeg('test.jpg',quality=90)");
c.eval("library(wordcloud)");
c.voidEval("colors=c('red','blue','green','yellow','purple')");
c.parseAndEval(" data(SOTU);wordcloud(SOTU,min.freq=10,colors=colors);dev.off()");
xp=c.parseAndEval("r=readBin('test.jpg','raw',3000*3000);unlink('test.jpg');r");
return xp;
}
public void PlotDemo(REXP xp, JFrame f)throws Exception{
img=Toolkit.getDefaultToolkit().createImage(xp.asBytes());
MediaTracker mediaTracker=new MediaTracker(this);
mediaTracker.addImage(img, 0);
mediaTracker.waitForID(0);
f.setTitle("Test Image");
f.setSize(img.getWidth(null),img.getHeight(null));
f.setDefaultCloseOperation(EXIT_ON_CLOSE);
f.setVisible(true);
}
public void paint(Graphics g){
g.drawImage(img, 0, 0, null);
}
}
c.parseAndEval(" data(SOTU);wordcloud(SOTU,min.freq=10,colors=colors);dev.off()");这个句子的冒号里面都是一些R语句,只不过每句话后面都有一个分号。
运行结果如下:

这样就好了,我们使用java调用R语言就绘制出了一个简单的词云。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27