
如何看穿数据可视化的谎言
以前我们看到一个做得很烂的图表,或者穿帮的数据可视化作品时,往往是将它们嘲笑一番也就算了。但有些时候,尤其是刚过去的这一年,我们好像更难分辨一个可视化作品是单纯的糟糕产物,还是出于偏见而刻意制造的虚假信息。
当然,用数据来撒谎已经不是什么新鲜事儿了,但现在图表越来越容易被广泛传播,网上到处都是,而其中好多传递的是假象。你可能只是随便瞟了一眼,但一个简单的信息也可能在脑子里生根发芽。在你还不知道的时候,小李子已经在桌子上转起了陀螺,而没人关心它会停下来还是会一直转下去。
自然而然地,现在我们需要快速看穿一个图表是否在撒谎,而这篇图文就是你贴心的指导手册哟。
1)截断数轴
左边的y轴数据从10开始,纯粹的瞎话。右边的数据从0开始,很好。长度是柱状图视觉呈现的关键,所以当某些人通过截断数轴而故意把长度缩短时,整个图表的差别就变得更明显了。这些人想要展现出比实际情况更剧烈的变化。我在另一篇文章里详细谈了这个问题。
2)双重数轴
它用了两种差距极大的比例,可能是为了强行扯上因果关系。通过使用双重数轴,数据的量级可以根据两种度量来缩小或扩张。人们通常用它来表达相关度和因果关系。“因为这个东东,另一个事儿发生了,看,很清楚吧。”
Tyler Vigen做的假相关数据的项目是个极好的例子。
3)总和不对头
饼图中所有部分的比例加起来超过了100%。一些图表专门要展示总体中的某些部分,而当这些部分加起来超过了总和,问题就很大了。比如,饼图代表的是总共100%,而如果每个扇形的比例加起来超过了100%?怪怪的噢。
可以看看这个搞笑的例子。
4)只看绝对值
这其实只是人口分布图。当你对比不同地方、种类或群体时,你必须考虑相对值,公平比较任何事物都是相对的。你不能因为某个城镇发生了两起抢劫案,另一个只发生了一起,就说第一个镇更危险。万一第一个镇的人口是第二个的一千倍呢?更有效的方式往往是对比百分数和比例,而非绝对值和总值。
这幅xkcd的漫画很直白地展现了人口绝对数的影响。
5)有限范围
左图看上去增幅很大,但右图显示出这只是常态,且选定时间内的增幅实际并不明显。人们倾向于精心挑选日期和时间段来配合特定的叙事,所以更应该考虑到历史背景、时常发生的事件,以及合理的用来比较的基准。
当你研究全局时,可能会发现有趣的事情。
6)奇怪的分级
左图只有两个分级,大于1的究竟包括些什么?可能在打掩护。右图更好,展示了更多变量有些可视化作品会过分简化一个复杂的模型,而非展示出原数据中完整的变量范围。这样做很容易会把一个连续的变量转化为从属于某一类别的变量。
广泛的分级在某些情况下很有用,但复杂性往往才是事物的意义所在。要防止过分简化。
7)混乱的面积比
30是10的三倍,但或许是为了增加显著性,图上最大的矩形比最小的大得可不止三倍。如果按照面积来进行视觉上的编码,图形的大小比例就该是面积的比例。有些人却在做面积编码的可视化时,改变边长的比例来突出大小对比,完全是为了抓马啊。
有时这种错误是无意间造成的,更需要警觉。
8)操控面积维度
上下两个图形的面积相等,但看上去很不一样。或许有人懂得怎么用面积来做视觉编码,却还(gu)是(yi)做出了上图这样的东西。我还没见过如此夸张的例子,但以后说不定就会有。我打赌连象形图都能出现,等着瞧吧。
9)为了三维而三维
千万别。当你看到一个明明没必要还强行用三维的图表,请质疑它的数据、图表、作者及图表衍生出的任何事物。
划重点:如果一个可视化作品出现了以上任何问题,并不代表它一定在撒谎。正如Darrell Huff在《如何用数据撒谎》里说的:
“本书的标题和里面一些内容可能像是在说,所有类似的作品都是为欺骗而生的产物。美国统计协会一个分会的主席曾经因为这个批评我,他觉得与其说出于欺骗,倒更像是能力不足。”
当然,这并不等于就可以原谅,毕竟也做错了嘛。但记住这点,你在骂某某某是骗子之前就可以再考虑考虑。
我的经验是,仔细检查那些令人震惊的、比想象中更具戏剧性的图表。
图表并不能让虚假的信息变成真的,数据也不能。它们会屈从于做图的人,也展示出信息本身之外更多的东西。那么,睁大你的眼睛咯。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26