
R语言学习-基础篇
从2月10日开始自学R in action,将我的学习所得逐渐发布在这。
chapter1.新手上路
工作空间:存储着所有用户定义的对象(向量,矩阵,函数,数据框,列表);
当前的工目录保存是R用来读取文件和保存结果的默认目录。
getwd()显示当前工作目录;
setwd(“”)修改当前的工作目录;工作目录的"\"要换成“/”;历史记录保存在文件.Rhistory中,工作空间保存在文件.RData中。
install.packages("")下载某个包,library();载入某个包;
包使用方法的查询:help(package="package_name");
chapter2创建数据集
1.不同的行业对数据集行和列的叫法:
统计学家:观测和变量
2.R中的数据结构
标量,向量,矩阵,数组,数据框,列表
(1)向量------------------->数组 (区别:c中数组是从0开始计数的,R是从1开始)
a<-c(1,2,3,4)
a[3](和c类似呢)
a[(c(1,2,4))] #访问1,2,,4号元素
a[2:4]
(2)矩阵--------------------》二维数组
mymatrix<-matrix(1:20,nrow=5,ncol=4)
cells<-c(1,26,24,56)
rnames<-c("r1","r2")
cnames<-c("c1","c2")
mymatrix<-matrix(cells,nrow=2,ncol=2,byrow=true,dimnames=list(rnames,cnames)) byrow=true 按行填充 false 按列填充
矩阵下标使用
x[1,2]
x[1,]
x[,2]
x[1,c(1,2)]
(3)数组与矩阵类似,但是维度可以大于2
(4)数据框
mydata<-data.frame(col1,col2,col3)
选取数据框的元素
mydata[1:2]
mydata$coln $的作用类似与c中的.
(5)列表
一些对象的有序集合
2.数据的输入
1.从键盘输入
edit()函数会自动调用一个允许从键盘输入的文本编辑器
mydata<-dataframe(age=numeric(0),gender=charactor(0),weight=numeric(0))
mydata<-edit(mydata) edit实际上是在对象的一个副本上操作,需要赋值到一个目标上
2.从带分隔符的文本文件导入数据
>mydataframe<-read.table("myfile.csv",header=TRUE,sep=",",row.names="id")
> mydataframe
grade
1 23
2 23
3 12
4 32
5 12
> mydataframe<-read.table("myfile.csv",header=TRUE,sep=",")
> mydataframe
id grade
1 1 23
2 2 23
3 3 12
4 4 32
5 5 12
3.访问数据库管理系统
需要先安装ODBC驱动,注册数据源名称,用户名以及密码。
myconn<-odbcConnect("**",uid="**",pwd="**")
crimedat<-sqlFetch(myconn,Crime)
chapter3图形初阶
>opar<-(no.readonly=TRUE)---------------------------保存当前图形设置参数
> par(pin=c(2,3))---------------得到的图形大小为两英尺宽,三英尺高
> par(cex.axis=0.75,font.axis=3)-------------------坐标轴刻度设置为斜体,0.75倍
> par(lwd=2,cex=1.5)---------------线条为默认宽度2倍,符号1.5倍
> plot(dose,drugA,type="b",pch=19,lty=2,col="red")
> plot(dose,drugB,type="b",pch=19,lty=2,col="blue",bg="green")这两幅图都遵循par的设置
>par(opar)----------------------还原
可以使用title函数为图形添加标题和坐标轴标签
使用axis函数创建自定义坐标轴
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26