
R语言读取Excel文件的各种方法
最近初学R语言,在R语言读入EXCEL数据格式文件的问题上遇到了困难,经过在网上搜索解决了这一问题,下面归纳几种方法,供大家分享:
第一: R中读取excel文件中的数据的路径:
假定在您的电脑有一个 excel 文件,原始的文件路径是: D:workdata1
如果直接把这个路径拷贝到R中,就会出现错误,原因是:
是escape character(转义符),\才是真正的字符,或者用/
因此,在R中有两种方法读取该路径:
1:在R中输入一下路径: D:\work\data\1 2:在R中输入一下路径: D:\work\data\1 第二: R中读取excel文件中的数据的方法 :
read.table(),read.csv(),read.delim()直接读取EXCEl文件时,都会遇到一下问题:“在读取‘.xls’的TableHeader时遇到不完全的最后一行”。解决的方法有以下几种:假如文件1.1中是一个6乘以2的矩阵,元素为:
方法1: xls另存为csv格式然后用read.csv :
具体过程如下:
> data<-read.csv("D:\work\data\1.csv") > data X1 X23 1 2 24 2 3 25 3 4 26 4 5 27 5 6 28 > data<-read.csv("D:\work\data\1.csv",header = F) > data V1 V2 1 1 23333 2 2 24 3 3 25 4 4 26 5 5 27 6 6 28 > data<-read.csv("D:\work\data\1.csv",header = T) > data X1 X23333 1 2 24 2 3 25 3 4 26 4 5 27 5 6 28 也就是说 header = T(TURE)是默认的状态 ,在这默认状态下,输出的data矩阵是一个5乘以2的矩阵,第一行作为了data的名字,如果 header = F(FALSE), 则会现实原始的矩阵结果。
方法2: xls另存为txt格式然后用read.table : 如例子所示:
> data<-read.table("D:\work\data\1.txt",header = T) > data X1 X23 1 2 24 2 3 25 3 4 26 4 5 27 5 6 28
> data<-read.table("D:\work\data\1.txt",header = F) > data V1 V2 1 1 23 2 2 24 3 3 25 4 4 26 5 5 27 6 6 28 方法3:打开EXCEL,全选里面的内容,点击复制,然后在R中输入一下命令:数据分析培训
data <- read.table("clipboard", header = T, sep = 't') 结果如下所示:
> data <- read.table("clipboard", header = T, sep = 't') > data X1 X23 1 2 24 2 3 25 3 4 26 4 5 27 5 6 28 > data <- read.table("clipboard", header = F, sep = 't') > data V1 V2 1 1 23 2 2 24 3 3 25 4 4 26 5 5 27 6 6 28 使用这种方法的时候一定要注意复制!剪切板里面没有内容是无法运行的!以上是三种方法,如果还有别的更好的,请大家补充,谢谢!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26