京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言对回归模型进行回归诊断
在R语言中,对数据进行回归建模是一件很简单的事情,一个lm()函数就可以对数据进行建模了,但是建模了之后大部分人很可能忽略了一件事情就是,对回归模型进行诊断,判断这个模型到低是否模型的假定;如果不符合假定,模型得到的结果和现实中会有巨大的差距,甚至一些参数的检验因此失效。
因为在对回归模型建模的时候我们使用了最小二乘法对模型参数的估计,什么是最小二乘法,通俗易懂的来说就是使得估计的因变量和样本的离差最小,说白了就是估计出来的值误差最小;但是在使用最小二乘法的前提是有几个假设的。
这里我就引用《R语言实战》的内容了,在我大学中的《计量经济学》这本书讲的更为详细,不过这里主要是介绍使用R语言对模型进行回归诊断,所以我们就不说太详细了;
假定
正态性:对于固定的自变量值,因变量值成正态分布,也就是说因变量的是服从正态分布的
独立性:Yi值之间相互独立,也就是说Yi之间不存在自相关
线性:因变量和自变量是线性相关的,如果是非线性相关的话就不可以了
同方差:因变量的方法不随着自变量的水平还不同而变化,也可称之为同方差
为了方便大家使用和对照,这里就使用书上的例子给大家介绍了,在系统自带的安装包中women数据集,我们就想通过身高来预测一下体重;在做回归诊断之前我们得先建模;
首先我们先看一下数据是长什么样子的,因为我们不能盲目的拿到数据后建模,一般稍微规范的点流程是先观察数据的分布情况,判断线性相关系数,然后在考虑是否建立回归模型,然后在进行回归诊断;
R代码如下:
data(‘women’)
women
结果如下
初步观察数据大概告诉我们体重就是跟随着身高增长而增长的,再通过画一下散点图观察。
R代码如下
plot(women)
然后我们在判断一下各个变量之间的线性相关系数,然后再考虑要不要建模
R代码如下
cor(women)
结果如下
从相关系数的结果上看,身高和体重的相关程度高达0.9954,可以认为是完全有关系的。
根据以上的判断我们认为可以建立模型去预测了,这时候我们使用LM()函数去建模,并通过summary函数去得到完整的结果。
R代码如下
model <- lm(weight~height,data=women)
summary(model)
出现这个问号原因是由于电脑字符集问题;稍微解读一下这个结果,RESIDUALS是残差的五分位数,不知道五分位的可以百度一下,这里不多说,下面的结果height的回归系数是3.45,标准差是0.09114,T值为37.85,P值为1.09e-14,并显著通过假设检验,残差的标准差为1.525,可决系数为0.991,认为自变量可以解释总体方差的99.1%,调整后的可决系数为0.9903,这是剔除掉自变量的个数后的可决系数,这个比较有可比性,一般我都看这个调整后的可决系数。结果就解读那么多,因此得到的结果就是
上面只是借用了一个小小例子来讲解了一下R语言做回归模型的过程,接下来我们将一下如何进行回归诊断,还是原来的那个模型,因为使用LM函数中会有一些对结果评价的内容,因此我们用PLOT函数将画出来;
R代码如下
par(mfrow=c(2,2))
plot(model)
结果如下
左上:代表的残差值和拟合值的拟合图,如果模型的因变量和自变量是线性相关的话,残差值和拟合值是没有任何关系的,他们的分布应该是也是在0左右随机分布,但是从结果上看,是一个曲线关系,这就有可能需要我们家一项非线性项进去了
右上:代表正态QQ图,说白了就是标准化后的残差分布图,如果满足正态假定,那么点应该都在45度的直线上,若不是就违反了正态性假
左下:位置尺度图,主要是检验是否同方差的假设,如果是同方差,周围的点应该随机分布
右下:主要是影响点的分析,叫残差与杠杆图,鉴别离群值和高杠杆值和强影响点,说白了就是对模型影响大的点
根据左上的图分布我们可以知道加个非线性项,R语言实战里面是加二次项,这里我取对数,主要是体现理解
R代码如下
model1 <- lm(weight~height+log(height),data=women)
plot(model1)
summary(model1)
结果如下
诊断图
模型拟合结果图
综合起来我们新模型貌似更优了;我就介绍到这里,具体大家可以看书籍
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27