
在大数据时代,商业模式正发生大变革
大数据的“喧闹”已有几年,业界认为,现在是认真冷静下来思考一些关于大数据根本性问题的时候了。近日,国内专注于大数据应用产品的“据说研究院”负责人接受本报采访时表示,大数据的根本性价值是破解人类信息不对称的千年难题,未来或将有一种主流的商品,那就是数据应用商品。
大数据的根本性作用是什么?
人类长期所处的物理世界中,一直受制于时空限制,产生的数据极为有限,导致信息不对称的现象十分严重。信息不对称成为人类的根本性困局,人类不断地为这个困局而搏斗着。知情权权利声索、博弈论理论衍生、信息经济学创立等,都是人类与该根本性困局难题进行斗争的体现。随着信息技术的深入发展,地球上的任何人、任何事、任何物都可能时时刻刻产生大量数据,传统的物理世界将可以通过数据世界来展现,人类可以透过数据世界更加清晰真切地认识熟悉而陌生的物理世界,信息不对称的难题将因此获得破解。因此,应该说,大数据的根本性价值是破解人类信息不对称的千年难题。
对于大数据,普通大众最应该关注什么?
大数据包括的范围比较广泛,如果必须按照传统产业链的思维来划分,可以包括以技术为中心的平台层(并行构架和资源平台,即硬件层面)、系统层面(大数据存储管理和并行编程模型与计算框架)、算法层(基础算法和应用算法)和应用层(应用开发和行业应用),以及以数据规划、数据采集、数据清洗、数据标注、数据挖掘、数据分析和数据应用为基础的数据产品层面。当然,数据产品层面又包括数据交易、数据应用和数据服务等方面。事实上,数据产品层面,是大数据产业最具价值的环节,也是与我们普通大众比较接近的部分,普通大众关注这一环节就足矣。
大数据为何会改变人类思维?
几千年来,人类都是“因果性思维”,这是小数据时代的有限数据所致,面对数量有限的结构化数据,人类不仅能够知道“是什么”,也能够知道“为什么”,相关性思维仅仅留存于侦察思维和中医思维(《易经》)的狭小领域里。但是,当面对日益剧增的海量数据和绝大部分都是非结构化数据时,人类的因果性思维显得更加苍白无力,仅仅靠人脑,人类不仅不知道“是什么”,也不知道 “为什么”。因此,人类必须从几千年来 “因果性思维” 的桎梏中解脱出来,转变为“相关性思维”。同时,由于大数据时代的来临,企业间边界、产业间边界、线上和线下的边界等都正在快速消除,跨界融合正在成为主流,因此,人类也只有转变为“跨界”的相关性思维,才能够适应时代的变化。
怎么理解“数据驱动一切”?
“数是万物的本原”,事物的本质和规律隐藏在各种原始数据的相互关联之中。对同一个问题,不同的数据能提供互补信息,通过相关性思维,让不同“维度”的海量数据“关联”起来,从而实现对物理世界的真实认识。大数据通过“量化一切”而实现世界的数据化,并由此改变人类认知和理解世界的方式,同时带来全新的大数据世界观。因此,当地球上的一切将可能产生数据时,数据将成为未来重要的生产资源甚至战略资源,未来所有的行业都会是“大数据+”,人类必须适应“数据驱动一切”的改变, 并且,这个未来并不遥远。
大数据真能创造一个“多维世界”吗?
人类目前同时处于物理世界、网络世界和数据世界之中,只不过每一个人在不同世界的“存在感”不一样罢了,也正是三个世界将人类重新分割开来,有人仅仅能够理解物理世界的事情,难以理解网络世界和数据世界的事情;也有人仅仅能够理解物理世界和网络世界的事情,对于数据世界往往并不理解。当然,处于不同世界的人,其思维方式和行为方式都是有差异的,所导致的结果往往也是完全不一样的。很显然,既然三个世界是同时客观存在的,我们就应该真切拥抱这三个世界,不可偏废,更不可拒绝。我们应该在三个并行世界中游走、思维、管理、创新、构建商业模式和产业模式。
在大数据时代,商业模式为何都会发生变革?
传统的物理世界,因为时空限制信息是严重不对称的,我们以往所有的商业模式都是基于信息不对称的物理世界而建立的,很多商业模式都是因为赚取信息不对称的钱而存活,如电视台、报纸、网络等广告模式,再比如工厂以企业为中心生产各种商品出售,还有传统金融机构仅仅依赖于抵押贷款,以流量驱动下的传统电子商务等。当地球上的人、事、物都因为产生大量数据而构建起“关系”,让人类顷刻间获得了无限的信息对称,一切基于信息不对称的物理世界而建立的商业模式势必获得变革,这也是不得不面临的变革。未来,主流的商业模式将是以大数据为基础的产业互联网。主流的创新模式将是在物理世界、网络世界和数据世界中自由穿行的创新,未来会有一种主流的商品,那就是数据应用商品。
数据世界究竟离我们有多远?
应该说,数据世界就存在于我们面前,无论你“识”还是“不识”,它就在那里。这要根据每一个人在多维世界的“存在感”进行区别。认为数据世界很遥远的,是因为在数据世界的“存在感”较差;认为数据世界就在眼前的,是因为他就在数据世界中或者他正在构建数据世界的“施工现场”。
当然,数据世界并非自己就能够自动建立的,需要我们人类以往的思维方式、行为方式、决策方式、商业模式、产业模式和管理模式等发生变化,而这种变化是痛苦的。但是无论如何痛苦,历史不会因为某些人的痛苦而停下它不可阻挡的时代洪流。面对“数据世界”的建立,世界各国近乎站在同一个起跑线上,任何一个国家的怠慢和无知,都将为此付出十分沉重的代价。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28