
这一年来,数据科学家都用哪些算法
在“数据为王”的今天,越来越多的人对数据科学产生了兴趣。数据科学家离不开算法的使用,那么,数据科学家最常用的算法,都是哪些呢?
最近,著名的资料探勘信息网站KDnuggets策划了十大算法调查,这次调查对数据科学家常用的算法进行排名,并发现最“产业”和最“学术”的算法,还对这些算法在过去5年间(2011~2016)的变化,做了一番详细的介绍。
这次调查结果,是基于844名受访者投票整理出来。
KDnuggets总结出十大算法及其投票份额如下:
图1:数据科学家使用的十大算法和方法。
请参阅文末的所有算法和方法的完整列表。
从调查中得知,受访者平均使用8.1个算法,与2011年的一项类似调查相比大幅提高。
与用于数据分析/数据挖掘的2011年投票算法相比,我们注意到流行的算法仍然是回归算法、聚类算法、决策树和可视化。相对来说最大的增长是以(pct2016/pct2011-1)测定的以下算法:
Boosting,从2011年的23.5%至2016年的32.8%,同比增长40%
文本挖掘,从2011年的从27.7%至2016年的35.9%,同比增长30%
可视化,从2011年的从38.3%至2016年的48.7%,同比增长27%
时间序列分析,从2011年的从29.6%至2016年的37.0%,同比增长25%
异常/偏差检测,从2011年的从16.4%至2016年的19.5%,同比增长19%
集合方法,从2011年的从28.3%至2016年的33.6%,同比增长19%
支持向量机,从2011年的从28.6%至2016年的33.6%,同比增长18%
回归算法,从2011年的从57.9%至2016年的67.1%,同比增长16%
在2016年最受欢迎的新算法是:
K-近邻算法(K-nearest neighbors,KNN),46%份额
主成分分析(Principal Commponent Analysis,PCA),43%
随机森林算法(Random Forests,RF),38%
最优化算法(Optimization),24%
神经网络-深度学习(Neural networks-Deep Learning),19%
奇异值矩阵分解(Singular Value Decomposition,SVD), 16%
跌幅最大的算法分别为:
关联规则(Association rules),从2011年的28.6%至2016年的15.3%,同比下降47%
增量建模(Uplift modeling),从2011年的4.8%至2016年的3.1%,同比下降36%
因子分析(Factor Analysis),从2011年的18.6%至2016年的14.2%,同比下降24%
生存分析(Survival Analysis),从2011年的9.3%至2016年的7.9%,同比下降15%
下表显示了不同算法类型的用途:监督学习、无监督学习、元分析和其他算法类型。我们排除了NA(4.5%)和其他(3%)的算法。
表1:按行业类型的算法使用
我们注意到,几乎所有人都在使用监督学习算法。政府和产业的数据科学家们比学生或学术界使用了更多的不同类型的算法,产业数据科学家更倾向使用元算法。
接下来,我们分析深度学习的十大算法按行业类型的使用。
表2:深度学习的十大算法按就业类型的使用
Table 2: Top 10 Algorithms + Deep Learning usage by Employment Type
为了使差异更为醒目,我们计算特定行业类型相关的平均算法使用量设计算法为Bias(Alg,Type)=Usage(Alg,Type)/Usage(Alg,All)-1。
图2:按行业的算法使用偏差
我们注意到产业界数据科学家更倾向使用回归算法、可视化、统计算法、随机森林算法和时间序列。政府/非盈利组织更倾向使用可视化、主成分分析和时间序列。学术研究人员更倾向使用主成分分析和深度学习。学生通常使用算法较少,但他们用的更多的是文本挖掘和深度学习。
接下来,我们看看代表整体KDnuggets访客的地区参与情况。
参与投票者的地区分布如下:
北美,40%
欧洲,32%
亚洲8%
拉美,5.0%
非洲/中东,3.4%
澳洲/新西兰,2.2%
与2011年的调查一样,我们将产业/政府合并为同一个组,将学术研究人员/学生合并为第二组,并计算算法对产业/ 政府的“亲切度”:
亲切度为0的算法在产业/政府和学术研究人员/学生的使用情况相同。IG亲切度约稿表示该算法越“产业”,越低则表示越“学术”。
其中最“产业”的算法”是:
增量建模(Uplift modeling),2.01
异常检测(Anomaly Detection),1.61
生存分析(Survival Analysis),1.39
因子分析(Factor Analysis),0.83
时间序列(Time series/Sequences),0.69
关联规则(Association Rules),0.5
虽然增量建模又一次成为最“产业”的算法,但出乎意料的是它的使用率如此低:区区3.1%,在这次调查中,是使用率最低的算法。
最“学术”的算法是:
神经网络(Neural networks - regular),-0.35
朴素贝叶斯(Naive Bayes),-0.35
深度学习(Deep Learning),-0.19
最大期望算法(EM),-0.17
下图显示了所有算法以及它们在产业界/学术界的亲切度:
图3:Kdnugets调查:数据科学家使用的流行算法:产业界vs学术界
下表包含了算法的详细信息,在2016年和2011年使用它们的受访者百分比调查,变化(%2016 /%2011 - 1)和行业亲切度如上所述。
表3:KDnuggets2016调查:数据科学家使用的算法
下表包含各个算法的详细信息:
N: 根据使用度排名
Algorithm: 算法名称
Type:类型。S - 监督,U - 无监督,M - 元,Z - 其他,
2016 % used:2016年调查中使用该算法的受访者比例
2011 % used:2011年调查中使用该算法的受访者比例%Change:变动 (%2016 / %2011 - 1)
Industry Affinity:产业亲切度(上文已提到)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14