京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师如何做好数据分析
做数据分析前我们首先要明确分析目的和内容,对于数据分析师而言,他们的进阶需求无外乎是各个企业对数据分析师的职位要求。在一些招聘平台上,我们随便搜索下数据分析的岗位信息,都能找到大量类似于下面的一些职位要求信息:别看岗位职责,任职要求这么多,其实主要就三点要求:
1)对相关业务的理解;
2)掌握一到二种数据分析工具;
3)良好的沟通。可能不同的公司因为需求不同,会在要求上有点小小的不同,而这个不同主要集中在数据库上。
了解数据分析师的具体需求之前,我们有必要先了解数据分析师的职位体系。在传统行业中,数据分析更多存在移动、银行、超市等行业,在这些行业中你才会偶尔听到数据分析师这个职位,也许更多是听到数据挖掘工程师、数据建模师。在中国也许只在电信的项目中,才会存在真正的意义上的数据挖掘。
业从广义上讲可以分为以下几个职位:
1、数据分析师
更注意是对数据、数据指标的解读,通过对数据的分析,来解决商业问题。主要有以下几个次层次:
(1)业务监控
(2)建立分析体系:
(3)行业未来发展的趋势分析:
(4)主要技能要求:
数据库知识(SQL至少要熟悉)、基本的统计分析知识、EXCEL要相当熟悉,对SPSS或SAS有一定的了解,对于与网站相关的业务还可能要求掌握GA等网站分析工具,当然PPT也是必备的。
2、数据挖掘工程师
更多是通过对海量数据进行挖掘,寻找数据的存在模式、或者说规律,从而通过数据挖掘来解决具体问题。数据挖掘更多是针对某一个具体的问题,是以解决具体问题为导向的。例如:聚类分析,通过对于会员各种人口统计学、行为数据进行分析,对会员进行分类,对不同的类型的会员建立相应的profiling,从而更好的理解会员,知道公司会员是到底如何?高、中、低低价值的会员构成,既可以后期各种会员的运营提供指导,提高活动效率,可以指导公司的营销,例如广告的投放策略。以及用于公司各种战略的制定。
主要技能要求,数据库必须精通。很多时候,你模型的数据预处理,可能成在数据库里完成,你用到的数据库技巧更高。必须要会成熟的数据挖掘工具、数据挖掘算法,例如:SPSS/CELEMENTINE、SAS/EM等,当然如果你会一、二款开源软件,并会写一些程序代码那是最好的,大公司都喜欢用开源的软件,例如:R、WEKA。
3、数据建模师
这个职位与数据挖掘工程师还是有本质区别的。数据建模师,更多偏向于中、小数据量,而且其使用更多更多是统计学的方法,而数据挖掘中的例如:决策树、神经网络、SVM等在这里是根据不会涉及的。
当然二者有一个共同之处都是,针对很具体的问题,都是会解决某个具体问题,例如:营销反应率,你就可能历史的邮箱、短信的反应情况,来建模型进行预测,从而提高邮件反应率,或者减少对用户来说的“垃圾”邮箱,提高用户体验。所以从掌握的技能上讲,这二者就有很大的区别,数据建模师其实很少会提到算法这个词,更多说使用什么模型,有感觉吗?但是从实务界来看,这二个模型越来越没有明确的分工,一般来说都会二个职位的人都会去学习对方的知识,所以这二个职位有合并的趋势,但在未来几年来,我觉得公司要招人的时候应该还是要有区别的。
4.数据分析师的职位级别划分
不同公司对数据分析师的职位划分稍有不同,在一些中小型企业,没有成立独立的数据中心前,数据分析的相关职位往往是在譬如市场部、运营部这些部门之下,通常数据分析成员在2-4人不等。对于一些大型企业,有独立的数据部门的企业,其数据分析团队人员则是十到百人不等,其职位头衔有通俗的总监、经理、主管划分,也有助理、资深、专家之类的划分。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31