
数据分析师未来发展规划有哪些
数据分析师不能只成为一个技术专家,要成为可以影响公司运作的人。
小编认为数据分析师在进阶的道路上有如下选择:
1、成为数据技能超强的产品经理
产品经理的工作非常综合,既考验创意创新,也需要对用户行为和产品的逻辑进行深入的研究,经验丰富的数据分析师往往视野开阔,容易站在宏观层面去思考内在的联系。
优秀的数据分析师有好的产品感觉。以超强的数据分析能力作为背书,向产品经理发展,思维方式的优势,很容易让一个对数据敏感的产品经理脱颖而出。
2、成为数据指导业务的运营VP
数据分析师常常需要通过挖掘数据背后的信息,解答市场运作的问题,指导高层的业务决策,进行精准的数据挖掘或广告投放。事实上,这也是越来越多对大数据有需求的公司招聘数据分析师的原因。心理学、经济学和统计学加持的数据分析师,拥有普通运营人无法拥有的利器,以此作为切入点做运营工作,具有后来居上的潜能。
3、成为管理或战略
事实上,除了公司高层,数据分析师是唯一站在高处俯视全局的人。一家互联网公司的各项工作,几乎都可以在数据上直观体现出来。
强大的分析和思辨能力,使数据分析师拥有鹰一般的眼睛。深度参与公司的管理和商业行为,成为一个谋划者甚至决策者,是数据分析师可以上演的逆袭。
4、成为博学广识的数据科学家
随着商业的发展,越来越多的行业需要处理数据的专家,互联网+正渗透到广告、量化金融等各种各样的领域。数据分析师应保持开放的心态,多多学习视野之外的领域,成为既懂技术又懂业务知识的专家。
互联网行业的优势在于,与其他行业相比,这个领域的公司可以采集到全面的数据,并以此进行研究应用。数据分析师站在数据之巅,更加有机会时刻参与到业务中去。数据背后,每一个觉醒的分析师,都可能成长为互联网公司的核心。数据分析师千万不要认为自己只是一个技术人员。
成功者的经历告诉我们,比起数据库、统计、业务理解程序等硬性技能,严谨的工作态度、良好的沟通能力、迅速的学习能力以及随时随地的好奇心,这四项软实力,是数据分析师突破自己的决定性因素。从业多年,置身互联网行业,刘普成有一个特别深的体会:
数据分析师不要只站在岸边看业务岗位的同事们游泳。半年都不懂业务的数据分析师是没有进入状态的。从技术人员到公司核心,数据分析师需要用开放的好奇心不断拓宽知识的疆界。
数据分析师作为一个出现时间不长的工种,大数据时代下,具有良好的发展前景,但成为螺丝钉还是成为龙头,这里面的裂变和跃迁,需要每一个数据分析师怀着好奇心精神不断拥抱新的领域,尝试新的可能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04