
一个数据分析师如何改变比码农还惨的人生
直到做数据分析师五、六年了,每每和家人朋友聊天,都还是会有人不懂我在做什么。
家人:“数据分析?分析什么东西?”
我:“哪里有数据,哪里就有我们,什么都可以分析。”
家人:“是软件工程师吗?会编程吗?”
我:“...不是,不太会。”
家人:“那是管理层吗?”
我:“还...还不到级别。”
家人:“那是商务人员?做市场或销售。”
我:“...也不是,不过我们辅助他们作决策。”
家人:“决策不都是老板说了算吗?你们到底做什么?”
我:“......来,我去给您加点水。”
除了家人朋友,很多时候,同公司内部的人也会比较困惑,数据分析师究竟是做什么的。收集数据、整理数据表、做各种报表、写ppt、做挖掘模型、打小报告 ......每个人的理解都不一样。
“小陈,你能给我发一个去年一年的xx页面的访问量吗?最好是以国家,行业,公司规模作为纬度的,浏览量和UU都要。”在数据分析师眼中,这样的场景早已司空见惯。
由于我们对SQL等数据工具轻车熟路,很多部门就会直接找我们要数据,但并不会说清楚前因后果。这样不仅浪费分析师时间,也并不能解决业务人员的需求。
数据分析,被很多部门漏看了“分析”二字。
数据分析师的正确姿势应该是什么样?
互联网公司的优势在于,运营过程中产生大量数据,这些数据可以通过一些手段转化为决策的动力。
数据分析师,就是这其中的结合点。
产品,营销,销售等部门,都会有不同的需求。
例如,产品经理最关心的,是AB测试的数据,用以决定产品的效果;
营销团队,在乎营销渠道反馈与结果的数据,以便设计下一个营销战略;
销售,关心客户的购买率,保留,以及追加销售时机等。
数据可以直接为其提供服务。
而很多数据分析师现在正在做什么呢?
以写SQL做图表为生,把数据整理的干干净净整整齐齐。
但这仅仅是第一步,很多时候,商务部门人员无法直接理解表格数据。
那么数据分析师,还需要把数据通过浅显易懂的图表形式展现出来,无论是饼状图,曲线图,柱状图等等。
但这样的需求可大可小,随时都有可能产生,十分耗费精力和时间。
如果可以自动化出数据,制作走势图,就可以大大的减轻分析师的负担。
在我有限的工作经验里,数据分析团队往往是工作非常辛苦的团队,原因主要有两个。
一、数据分析人员多半是一对多的关系,一名分析人员同时需要支持很多业务团队,每个业务人员都有不同的截止日期,重要程度,这些工作都堆在分析师面前,通常需要加班完成;
二、分析人员属于幕后人员,而且没有开发的码农们那么受重视,也没有得到上级在人员或精神上的支持,于是多半是苦逼的熬着。
我们应该怎么改变这种屌丝生活呢?
首先可以对自己工作进行优先排序,并与对口业务人员沟通,减少或避免复制粘贴的工作。或是进行培训,将如何做复制粘贴的工作方法教给业务人员,所谓授人以鱼不如授人以渔。
不过这些仍然只能治标不能治本。
最直接的方式就是善于利用外部软件服务,避免脏活累活都自己干。
很多现有的服务公司,都可以为帮助客户直接产生漂亮干净的数据,进行无埋点采集。要什么有什么的数据,大大减轻分析师数据处理的时间。
我和我的同事们也是在坑里摸索多年,生成了这样一种产品。运用无埋点采集, 让数据分析师能够专注于分析结果驱动业务,而不是作各种数据清洗和埋点采集或者数据质量QA。
让工程师解放出来,让产品经理可以任性起来,随意增加维度和指标。将更多时间投入在分析数据上。
最后,我个人的经验,在数据分析师的工作中,有三点十分重要。
第一,要勇于展示自己的工作。由于是幕后,我们更要学会自我销售、自我推广,让公司内部人员了解我们的工作进度和成果,得到认可;
第二,深入业务,详细了解商务内容。只有这样,在与业务人员沟通中,才可以得心应手,知道自己努力的方向;
第三,创新,创新,再创新。无论是建立数据挖掘模型,还是规模化数据平台,数据分析人员不仅要精通自己的工作内容,还要不断思考寻求简化现有流程方式,提供新颖实用,并且切合业务需求的产品。
只有这样,我们才有出头之日。
我们坚信,未来是大数据的时代,而数据分析师,就是走在时代前端的人。别把时间花费在低产出的数据整理和清洁上面,善于利用工具,朝向正确的方向努力,一定可以在成长道路上走得更快更远。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10