
一个数据分析师如何改变比码农还惨的人生
直到做数据分析师五、六年了,每每和家人朋友聊天,都还是会有人不懂我在做什么。
家人:“数据分析?分析什么东西?”
我:“哪里有数据,哪里就有我们,什么都可以分析。”
家人:“是软件工程师吗?会编程吗?”
我:“...不是,不太会。”
家人:“那是管理层吗?”
我:“还...还不到级别。”
家人:“那是商务人员?做市场或销售。”
我:“...也不是,不过我们辅助他们作决策。”
家人:“决策不都是老板说了算吗?你们到底做什么?”
我:“......来,我去给您加点水。”
除了家人朋友,很多时候,同公司内部的人也会比较困惑,数据分析师究竟是做什么的。收集数据、整理数据表、做各种报表、写ppt、做挖掘模型、打小报告 ......每个人的理解都不一样。
“小陈,你能给我发一个去年一年的xx页面的访问量吗?最好是以国家,行业,公司规模作为纬度的,浏览量和UU都要。”在数据分析师眼中,这样的场景早已司空见惯。
由于我们对SQL等数据工具轻车熟路,很多部门就会直接找我们要数据,但并不会说清楚前因后果。这样不仅浪费分析师时间,也并不能解决业务人员的需求。
数据分析,被很多部门漏看了“分析”二字。
数据分析师的正确姿势应该是什么样?
互联网公司的优势在于,运营过程中产生大量数据,这些数据可以通过一些手段转化为决策的动力。
数据分析师,就是这其中的结合点。
产品,营销,销售等部门,都会有不同的需求。
例如,产品经理最关心的,是AB测试的数据,用以决定产品的效果;
营销团队,在乎营销渠道反馈与结果的数据,以便设计下一个营销战略;
销售,关心客户的购买率,保留,以及追加销售时机等。
数据可以直接为其提供服务。
而很多数据分析师现在正在做什么呢?
以写SQL做图表为生,把数据整理的干干净净整整齐齐。
但这仅仅是第一步,很多时候,商务部门人员无法直接理解表格数据。
那么数据分析师,还需要把数据通过浅显易懂的图表形式展现出来,无论是饼状图,曲线图,柱状图等等。
但这样的需求可大可小,随时都有可能产生,十分耗费精力和时间。
如果可以自动化出数据,制作走势图,就可以大大的减轻分析师的负担。
在我有限的工作经验里,数据分析团队往往是工作非常辛苦的团队,原因主要有两个。
一、数据分析人员多半是一对多的关系,一名分析人员同时需要支持很多业务团队,每个业务人员都有不同的截止日期,重要程度,这些工作都堆在分析师面前,通常需要加班完成;
二、分析人员属于幕后人员,而且没有开发的码农们那么受重视,也没有得到上级在人员或精神上的支持,于是多半是苦逼的熬着。
我们应该怎么改变这种屌丝生活呢?
首先可以对自己工作进行优先排序,并与对口业务人员沟通,减少或避免复制粘贴的工作。或是进行培训,将如何做复制粘贴的工作方法教给业务人员,所谓授人以鱼不如授人以渔。
不过这些仍然只能治标不能治本。
最直接的方式就是善于利用外部软件服务,避免脏活累活都自己干。
很多现有的服务公司,都可以为帮助客户直接产生漂亮干净的数据,进行无埋点采集。要什么有什么的数据,大大减轻分析师数据处理的时间。
我和我的同事们也是在坑里摸索多年,生成了这样一种产品。运用无埋点采集, 让数据分析师能够专注于分析结果驱动业务,而不是作各种数据清洗和埋点采集或者数据质量QA。
让工程师解放出来,让产品经理可以任性起来,随意增加维度和指标。将更多时间投入在分析数据上。
最后,我个人的经验,在数据分析师的工作中,有三点十分重要。
第一,要勇于展示自己的工作。由于是幕后,我们更要学会自我销售、自我推广,让公司内部人员了解我们的工作进度和成果,得到认可;
第二,深入业务,详细了解商务内容。只有这样,在与业务人员沟通中,才可以得心应手,知道自己努力的方向;
第三,创新,创新,再创新。无论是建立数据挖掘模型,还是规模化数据平台,数据分析人员不仅要精通自己的工作内容,还要不断思考寻求简化现有流程方式,提供新颖实用,并且切合业务需求的产品。
只有这样,我们才有出头之日。
我们坚信,未来是大数据的时代,而数据分析师,就是走在时代前端的人。别把时间花费在低产出的数据整理和清洁上面,善于利用工具,朝向正确的方向努力,一定可以在成长道路上走得更快更远。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26