京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与更好的零售
叙说起来零售历史经历了几个比较稳定的时期,但当中穿插了一些拐点或者说是——颠覆性改变。这些改变的核心无一例外都是数据:
首先,上世纪七八十年代EPOS的出现在品类管理发展中扮演了重要角色;
其次,在随后的90年代零售商的忠诚度计划或会员卡计划创造了一个完全基于顾客洞察更好决策的营销行业,美国的克罗格(Kroger)和英国的乐购(Tesco)在这方面引领全球零售行业;
第三,也是最近,电子商务革命为零售商提供了以前不可能获得的数据及洞察——是关于顾客决策方面的。通过使用点击流数据(Clickstream),在大多数时候,顾客是可以识别的,那么品类就能了解当我买了产品C,我其实也看了产品A和产品B——这对销售周期慢的行业来说是巨大的突破。另外,全渠道零售及社交媒体开辟了一个新的时代,让顾客能够占有大量的信息去比较产品、服务及价格——即使他们可能最终还是在实体店购买。再一次,一个完全的行业出现了——通过顾客再定向(retargeting)技术及推荐引擎——电子商务可以做出实时的商业决策。
在21世纪的前几年,大数据这个术语被用来描述整套新概念,比如很多的记录(长数据)、很多的维度(宽数据)、文本或图片(非结构化的数据)、实时或准实时(near real-time)。科技及社交媒体发展引发的大数据爆炸为零售商及品牌商提供了更多与顾客保持高度链接与做大生意的方式与方法。
所有零售的核心是为顾客创造更好的价值主张:无论它是为顾客省钱提供更低的定价,还是更与顾客相关的选品,更好的顾客服务,更有效的促销,或者是更有效率的运营及配送等。
正因为有太多的新技术产生数据,有太多的新数据源,所以零售商必须要有一个框架去理解这些数据:购物之旅模型(the Shopping Trip Model)。购物之旅模型定义了产生数据的所有顾客触点(touch point)以及触点发生的场景(比如搜索、到访/逛店、货架取货、支付、使用等等)。这样,任何新的数据概念都会被理解为某些触点的一个函数,有很多的触点并且每一个触点都会产生多种数据集。
举例来说:
模型中的逛店(线上或线下)——就是指顾客在网站、在APP或者在实体店浏览的那些时刻里发生的行为。特别地,若是在实体门店,新兴科技可以让零售商了解顾客在门店里怎样逛,以及他们如何最终找到他们想找的商品。机场、酒店及餐馆的WIFI应用相当普遍,在中国,门店里WIFI 的应用也开始逐渐普及。这却可能改变—最终的胜者可能是这样一些数据收集技术——可能是beacon或其他基于蓝牙技术的解决方案。无论谁将在技术上获得统治地位,数据的机会依然一样——只要具备了解顾客逗留时间及路径的能力。如果能将逛店洞察通过顾客唯一识别码(customer identifiable token)(如同自动登录的APP)与取货及支付等行为链接并分析,这将为零售商带来真正的商业转型。
那么,这些数据到底怎样落地并帮助零售商呢?以往的做法通常是,零售商给顾客打各种各样的标签(推断或直接收集描述个人财富状况、家庭状况、购物行为等的数据)。然而,这只是管中窥豹。要让数据能被实时使用,有必要在时间、地点及商品或品类等方面进行加强。
顾客可能对豆子价格敏感但却愿意花很多钱在护肤品上。一个上海的顾客可能周一到周五都在快节奏地工作但到周末会带家人去购物中心度个休闲的周末,喜欢从容不迫地购物,所以,该顾客应该在那天受到特别对待。想想你该如何告诉门店导购使用顾客洞察。
未来五年,使用多种数据源来多维度了解顾客将会是零售业的标准实践。那些取得大数据竞争优势的公司将会是那些能在各种场景下准确描述顾客的公司。一旦拥有数据,差异化和个性化的可能性就只能是受制于该公司的想象力及基于顾客洞察的执行力。
千店千面或门店差异化(提供不同的促销、个性化的定价、差异化的商品组合或者品牌体验等等)给物流和运营带来巨大的挑战。未来几年,会有零售商因为拥有数据能力从而可以为顾客提供个性化的购物体验,但是却缺乏运营能力来实施数据分析建议作出的改变。实际上,哪怕在今天,很多门店都知道调整一下晚上的选品就会有更好的销售——商品调整的实施限制不在于能指导调整的数据洞察,而是在于货架、场地空间或库存控制等运营因素。与投资于数据同样重要的是需要将门店智能化——让门店能实时了解库存状况(可能是通过RFID)、物理属性(温度、照明、湿度等等)、门店员工(位置、语言、专长等)以及更为重要的到店顾客(画像、购物偏好等等)。通过数据把“人(顾客)”和“场(门店)”链接就能为顾客提供个性化的购物体验,从而差异化门店,无论是线上还是线下。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04