京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与更好的零售
叙说起来零售历史经历了几个比较稳定的时期,但当中穿插了一些拐点或者说是——颠覆性改变。这些改变的核心无一例外都是数据:
首先,上世纪七八十年代EPOS的出现在品类管理发展中扮演了重要角色;
其次,在随后的90年代零售商的忠诚度计划或会员卡计划创造了一个完全基于顾客洞察更好决策的营销行业,美国的克罗格(Kroger)和英国的乐购(Tesco)在这方面引领全球零售行业;
第三,也是最近,电子商务革命为零售商提供了以前不可能获得的数据及洞察——是关于顾客决策方面的。通过使用点击流数据(Clickstream),在大多数时候,顾客是可以识别的,那么品类就能了解当我买了产品C,我其实也看了产品A和产品B——这对销售周期慢的行业来说是巨大的突破。另外,全渠道零售及社交媒体开辟了一个新的时代,让顾客能够占有大量的信息去比较产品、服务及价格——即使他们可能最终还是在实体店购买。再一次,一个完全的行业出现了——通过顾客再定向(retargeting)技术及推荐引擎——电子商务可以做出实时的商业决策。
在21世纪的前几年,大数据这个术语被用来描述整套新概念,比如很多的记录(长数据)、很多的维度(宽数据)、文本或图片(非结构化的数据)、实时或准实时(near real-time)。科技及社交媒体发展引发的大数据爆炸为零售商及品牌商提供了更多与顾客保持高度链接与做大生意的方式与方法。
所有零售的核心是为顾客创造更好的价值主张:无论它是为顾客省钱提供更低的定价,还是更与顾客相关的选品,更好的顾客服务,更有效的促销,或者是更有效率的运营及配送等。
正因为有太多的新技术产生数据,有太多的新数据源,所以零售商必须要有一个框架去理解这些数据:购物之旅模型(the Shopping Trip Model)。购物之旅模型定义了产生数据的所有顾客触点(touch point)以及触点发生的场景(比如搜索、到访/逛店、货架取货、支付、使用等等)。这样,任何新的数据概念都会被理解为某些触点的一个函数,有很多的触点并且每一个触点都会产生多种数据集。
举例来说:
模型中的逛店(线上或线下)——就是指顾客在网站、在APP或者在实体店浏览的那些时刻里发生的行为。特别地,若是在实体门店,新兴科技可以让零售商了解顾客在门店里怎样逛,以及他们如何最终找到他们想找的商品。机场、酒店及餐馆的WIFI应用相当普遍,在中国,门店里WIFI 的应用也开始逐渐普及。这却可能改变—最终的胜者可能是这样一些数据收集技术——可能是beacon或其他基于蓝牙技术的解决方案。无论谁将在技术上获得统治地位,数据的机会依然一样——只要具备了解顾客逗留时间及路径的能力。如果能将逛店洞察通过顾客唯一识别码(customer identifiable token)(如同自动登录的APP)与取货及支付等行为链接并分析,这将为零售商带来真正的商业转型。
那么,这些数据到底怎样落地并帮助零售商呢?以往的做法通常是,零售商给顾客打各种各样的标签(推断或直接收集描述个人财富状况、家庭状况、购物行为等的数据)。然而,这只是管中窥豹。要让数据能被实时使用,有必要在时间、地点及商品或品类等方面进行加强。
顾客可能对豆子价格敏感但却愿意花很多钱在护肤品上。一个上海的顾客可能周一到周五都在快节奏地工作但到周末会带家人去购物中心度个休闲的周末,喜欢从容不迫地购物,所以,该顾客应该在那天受到特别对待。想想你该如何告诉门店导购使用顾客洞察。
未来五年,使用多种数据源来多维度了解顾客将会是零售业的标准实践。那些取得大数据竞争优势的公司将会是那些能在各种场景下准确描述顾客的公司。一旦拥有数据,差异化和个性化的可能性就只能是受制于该公司的想象力及基于顾客洞察的执行力。
千店千面或门店差异化(提供不同的促销、个性化的定价、差异化的商品组合或者品牌体验等等)给物流和运营带来巨大的挑战。未来几年,会有零售商因为拥有数据能力从而可以为顾客提供个性化的购物体验,但是却缺乏运营能力来实施数据分析建议作出的改变。实际上,哪怕在今天,很多门店都知道调整一下晚上的选品就会有更好的销售——商品调整的实施限制不在于能指导调整的数据洞察,而是在于货架、场地空间或库存控制等运营因素。与投资于数据同样重要的是需要将门店智能化——让门店能实时了解库存状况(可能是通过RFID)、物理属性(温度、照明、湿度等等)、门店员工(位置、语言、专长等)以及更为重要的到店顾客(画像、购物偏好等等)。通过数据把“人(顾客)”和“场(门店)”链接就能为顾客提供个性化的购物体验,从而差异化门店,无论是线上还是线下。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09