
过年期间提升数据分析能力的靠谱方法
“过完年我要换个好工作!”很多同学在年前都立下如此雄心壮志为了实现这个美好的目标,春节期间应该怎么度过呢?
方案一:春节期间老把戏,胡吃海塞吹牛皮;钞票不见肥肉长,2月14空叹气。
点评:这个方案确实很经典,然而同学你确定这个方案和过完年换个好工作有关系?
方案二:保存一堆大V文章回家慢慢看。
点评:同学你确定春节期间开手机不是在抢红包,而是在认真学习???
方案三:带上一本《21天精通XXX编程语言》去旅行
点评:这个场景我们见过很多次了,买一本好书,立一个大Flag,然而假期回来书只翻了目录两页,然后被垫在电脑显示器下边了……
问题出在哪里?问题出在:
1. 已经毕业很多年,却仍期待有学校般的学习环境
2. 一提到提升就先想到提升技术,而节假日恰恰最不适合提升技术
先说问题1。一提到要提升能力,人们最容易联想到场景就是
l 一个安静的教室
l 一本已经编排好的课本
l 一支笔一个笔记本
l 一杯热茶一个滴答滴答的钟表
l 一道下午4点的金色阳光透过树荫照在黑板上
想象是美好的,现实是残酷的。在步入职场以后,大家都是就事论事,具体问题具体解决,日常要用到的知识点多且零碎,很少有人会整理出成体系的万能方法,很少有整片的时间去认真学习。比如春节,加上节前节后的工作空档期,是难得的学习好时间。如果还要玩过去的话,3月份招聘旺季开始可能就错过一些机会了。
所以,要坚决的破除“万事过万年以后再说”的幻想,认真准备!
再说问题2。数据分析能力提升到底提升的是什么?
数据分析师不只要负责提取数据,更重要的是分析。要把业务问题转化为可以用数据验证的假设,要收集数据证实假设,要在证实假设以后输出结论建议,因此数据分析师的能力至少包含三大层面:
1. 梳理问题
2. 整理数据
3. 输出结论
这三大层面中,梳理问题与输出结论是业务能力。简单来说就是:你怎么理解别人说的话,你怎么讲清楚自己想说的话。而整理数据,包括数据采集,统计计算,建立模型等等,是技术能力,需要根据数据需求,选择合适的方法,生产可用的数据,支持结论。
春节期间的环境,非常不适合技术能力的提升。技术能力提升,需要了解技术原理,需要实验素材,需要亲自动手,需要多次尝试。因此需要安静的环境与平稳的心情。而春节期间人在旅途,迎来送往,亲朋相聚,觥筹交错,吹牛拍马,环境太杂太乱,时间太碎片,心情也容易被突然抢到一个大红包,隔壁老王又来秀媳妇很漂亮等等干扰。所以为了保证质量,最好不要学技术类东西。
春节期间的环境非常适合业务能力的提升。
梳理问题:本质上是理解别人说的话。春节期间社交频繁,各类型,各层次的人都可以遇到。交谈有很多并且很容易涉及工作,婚姻等情况。与其被别人show财show官show恩爱气到半死,不如认真的观察对方,结合他的谈吐,衣着,移动端使用习惯,更加深刻的了解用户。思考:
1. 他是什么样的人?代表了什么阶层?
2. 他使用我们公司的什么业务?代表了什么需求?
3. 他的使用习惯是什么样的?会表现为哪些数据?
过节下来,大量的案例印在脑中,就会大大加深自己对于业务的理解。
输出结论:本质上是讲清楚自己的话。春节期间免不了,与其坐等别人催婚催孩催工作烦到大半死,不如认真考虑如何介绍自己,清晰的讲出:
1. 我是什么样的人?
2. 我做什么工作?创造什么价值?
3. 我的特长是什么?有什么优势?
你家二姑三舅之类人物听完,并且包含致敬的:嗯,高科技人才!那就说明介绍成功,说不定还介绍个妹纸什么的;如果听完一脸恍然大悟的:哦,私人电子厂搞电脑的;呵呵,哥们你还得努力提升一下。
这两个问题重要吗?当然重要!因为这六个问题,是做分析前后最需要理解和阐述的问题。有过跳槽经历的同学更知道,这六个问题,就是面对HR时,最需要搞清楚和最需要讲清楚的问题。不了解业务背景,不思考业务情况与数据表现之间的关系,不把数字转化为结论,最终只会落得一句:你就会跑数,不懂业务的评价。
所以过年期间可以努力提升这两方面能力,吹牛也是生产力,节后整理一下项目经验,对技术能力查漏补缺。3月份无论是谋求升职还是跳槽都会很有胜算的。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26