京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2017年数据科学发展中值得一入的坑
在数据科学领域,大数据和物联网正在持续快速增长着。目前的商业中已经逐渐可以把不同来源的数据拼凑在一起,并获得更多的信息,这也就意味着数据将变得更有意义。在开发新的商业模式和获得增长的过程中,使用数据已经变得越来越重要。世界各地的企业都在寻找一些可以利用数据进行商业化并从中获利的方式。接下来就是我们在2017年的数据科学界可能看到的现象以及数据科学怎样影响我们。
技术需求上的改变
机器学习曾被特斯拉的Elon Musk称之为“被召唤的恶龙”,但到如今,这个词还是以高频率被提起。亚马逊、Facebook、谷歌都已经加入了人工智能的竞赛中,在2017年,更多的商业模拟将会吸引到更多的机器学习数据科学家来增加他们各自部门实力。
但是对于相应工作的竞争可能也会更激烈一些。当你发现机器学习已经成为数据科学中的一个职业时不要惊讶,从2017年起更多的学校将会将人工智能列入他们的课程中。如果你想保持在这一浪潮最前列,那么这里有一些机器学习和人工智能相关证书可以供你获取。然而这里的课程都价格不菲——通常要10,000美元,相似的这些内容在一些训练课程网站如Coursera或者edX都相对比较便宜或者是免费的。
2016年,数据科学家最需要掌握的技能
为了在数据科学领域获得成就,其他的你还需要拥有的技能包括强大的技术和编程知识,尤其是使用R语言或者Python,还有SRS和MATLAB的经验也是非常有用的。
此外,你还需要习惯于使用关系数据库的工作,因此SQL也是非常重要的。在2015年,从领英上列出的工作列表中,SQL被列为最重要的技能。当然,Hadoop、Python和Java也是非常重要。
物联网和数据科学的结合
数据科学和物联网经常被看成是一个硬币的两面。
由于数据科学总是寻找数据和实时设备的接口从而实现先进的数据据分析,甚至用于决策,因此,在2017年,这两个行业将会走的越来越近,甚至合并在一起。
那么这一点如何实现呢?考虑一下一下场景。在不远的将来,你可能不需要钥匙来进入你的家门,当你走到门口的时候,它会感觉到你的存在,并自动为你开门。同时,当你离开的时候,它将会让家里的所有能量单元关掉——反而节省主人的钱。
这可能听起来像是进取号战舰(电影《星际迷航》中战舰)中的场景,但是我们也许在2017年看到这些场景都将开始发生——而且你要确定你有能力来投入在这些项目中。
人工智能、数据科学等对于物联网的影响,意味着你要能够处理无线接口层、不同设备、边缘处理、实时系统和深度学习等领域的工作。
不断发展的大数据技术
我们已经看到了在2016年天文数字般的增长,但是在下一年,随着大数据越来越普及并不断被企业所接受使用,大数据的预算还会继续增长。大多数企业也意识到了他们需要改进该领域的商业模式,这也就意味着需要更多的数据科学家来获取并处理大量的额外数据。
如果你想要寻找一个数据科学的职位,大数据的知识和数据框架是非常重要的。你尤其需要看看 ApacheHadoop,HDFS,Hbase,Spark,Stom,Solr和Kafka.
由大数据引领的医疗行业
数据科学已经在控制流行病和预测病人行为等方面发挥了重要作用。2015年,数据科学帮助预测了西尼罗病毒在美国的爆发,并达到了85%的精度。而且在今年早些时候,一个科学家团队开发了一个可以预测蝙蝠携带埃博拉病毒的模型。期待着2017年数据科学在医疗行业的进一步应用,并希望医疗行业能够不断找到更好的方式来满足日常需求和拯救生命。
随着电子医疗记录仪记录数据量的增加,我们所处理的数据已经达到历史最高水平。尽管大量的数据有他自身的有点和缺点,但是对于数据科学家而言这里存在着巨大的商机,期待他们在2017来破解这些数据的秘密,如果你正在寻找一个新兴市场,那么医疗行业就是了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31