
2017年数据科学发展中值得一入的坑
在数据科学领域,大数据和物联网正在持续快速增长着。目前的商业中已经逐渐可以把不同来源的数据拼凑在一起,并获得更多的信息,这也就意味着数据将变得更有意义。在开发新的商业模式和获得增长的过程中,使用数据已经变得越来越重要。世界各地的企业都在寻找一些可以利用数据进行商业化并从中获利的方式。接下来就是我们在2017年的数据科学界可能看到的现象以及数据科学怎样影响我们。
技术需求上的改变
机器学习曾被特斯拉的Elon Musk称之为“被召唤的恶龙”,但到如今,这个词还是以高频率被提起。亚马逊、Facebook、谷歌都已经加入了人工智能的竞赛中,在2017年,更多的商业模拟将会吸引到更多的机器学习数据科学家来增加他们各自部门实力。
但是对于相应工作的竞争可能也会更激烈一些。当你发现机器学习已经成为数据科学中的一个职业时不要惊讶,从2017年起更多的学校将会将人工智能列入他们的课程中。如果你想保持在这一浪潮最前列,那么这里有一些机器学习和人工智能相关证书可以供你获取。然而这里的课程都价格不菲——通常要10,000美元,相似的这些内容在一些训练课程网站如Coursera或者edX都相对比较便宜或者是免费的。
2016年,数据科学家最需要掌握的技能
为了在数据科学领域获得成就,其他的你还需要拥有的技能包括强大的技术和编程知识,尤其是使用R语言或者Python,还有SRS和MATLAB的经验也是非常有用的。
此外,你还需要习惯于使用关系数据库的工作,因此SQL也是非常重要的。在2015年,从领英上列出的工作列表中,SQL被列为最重要的技能。当然,Hadoop、Python和Java也是非常重要。
物联网和数据科学的结合
数据科学和物联网经常被看成是一个硬币的两面。
由于数据科学总是寻找数据和实时设备的接口从而实现先进的数据据分析,甚至用于决策,因此,在2017年,这两个行业将会走的越来越近,甚至合并在一起。
那么这一点如何实现呢?考虑一下一下场景。在不远的将来,你可能不需要钥匙来进入你的家门,当你走到门口的时候,它会感觉到你的存在,并自动为你开门。同时,当你离开的时候,它将会让家里的所有能量单元关掉——反而节省主人的钱。
这可能听起来像是进取号战舰(电影《星际迷航》中战舰)中的场景,但是我们也许在2017年看到这些场景都将开始发生——而且你要确定你有能力来投入在这些项目中。
人工智能、数据科学等对于物联网的影响,意味着你要能够处理无线接口层、不同设备、边缘处理、实时系统和深度学习等领域的工作。
不断发展的大数据技术
我们已经看到了在2016年天文数字般的增长,但是在下一年,随着大数据越来越普及并不断被企业所接受使用,大数据的预算还会继续增长。大多数企业也意识到了他们需要改进该领域的商业模式,这也就意味着需要更多的数据科学家来获取并处理大量的额外数据。
如果你想要寻找一个数据科学的职位,大数据的知识和数据框架是非常重要的。你尤其需要看看 ApacheHadoop,HDFS,Hbase,Spark,Stom,Solr和Kafka.
由大数据引领的医疗行业
数据科学已经在控制流行病和预测病人行为等方面发挥了重要作用。2015年,数据科学帮助预测了西尼罗病毒在美国的爆发,并达到了85%的精度。而且在今年早些时候,一个科学家团队开发了一个可以预测蝙蝠携带埃博拉病毒的模型。期待着2017年数据科学在医疗行业的进一步应用,并希望医疗行业能够不断找到更好的方式来满足日常需求和拯救生命。
随着电子医疗记录仪记录数据量的增加,我们所处理的数据已经达到历史最高水平。尽管大量的数据有他自身的有点和缺点,但是对于数据科学家而言这里存在着巨大的商机,期待他们在2017来破解这些数据的秘密,如果你正在寻找一个新兴市场,那么医疗行业就是了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29CDA LEVELⅠ考试大纲解读:洞察数据世界的入门指南 (一)PART 1 数据分析思维(占比 2%) 领会:考生需要领会数据分析思维的内 ...
2025-07-29本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 本课程 ...
2025-07-28CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-28PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-28t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-28PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22