京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2017年数据科学发展中值得一入的坑
在数据科学领域,大数据和物联网正在持续快速增长着。目前的商业中已经逐渐可以把不同来源的数据拼凑在一起,并获得更多的信息,这也就意味着数据将变得更有意义。在开发新的商业模式和获得增长的过程中,使用数据已经变得越来越重要。世界各地的企业都在寻找一些可以利用数据进行商业化并从中获利的方式。接下来就是我们在2017年的数据科学界可能看到的现象以及数据科学怎样影响我们。
技术需求上的改变
机器学习曾被特斯拉的Elon Musk称之为“被召唤的恶龙”,但到如今,这个词还是以高频率被提起。亚马逊、Facebook、谷歌都已经加入了人工智能的竞赛中,在2017年,更多的商业模拟将会吸引到更多的机器学习数据科学家来增加他们各自部门实力。
但是对于相应工作的竞争可能也会更激烈一些。当你发现机器学习已经成为数据科学中的一个职业时不要惊讶,从2017年起更多的学校将会将人工智能列入他们的课程中。如果你想保持在这一浪潮最前列,那么这里有一些机器学习和人工智能相关证书可以供你获取。然而这里的课程都价格不菲——通常要10,000美元,相似的这些内容在一些训练课程网站如Coursera或者edX都相对比较便宜或者是免费的。
2016年,数据科学家最需要掌握的技能
为了在数据科学领域获得成就,其他的你还需要拥有的技能包括强大的技术和编程知识,尤其是使用R语言或者Python,还有SRS和MATLAB的经验也是非常有用的。
此外,你还需要习惯于使用关系数据库的工作,因此SQL也是非常重要的。在2015年,从领英上列出的工作列表中,SQL被列为最重要的技能。当然,Hadoop、Python和Java也是非常重要。
物联网和数据科学的结合
数据科学和物联网经常被看成是一个硬币的两面。
由于数据科学总是寻找数据和实时设备的接口从而实现先进的数据据分析,甚至用于决策,因此,在2017年,这两个行业将会走的越来越近,甚至合并在一起。
那么这一点如何实现呢?考虑一下一下场景。在不远的将来,你可能不需要钥匙来进入你的家门,当你走到门口的时候,它会感觉到你的存在,并自动为你开门。同时,当你离开的时候,它将会让家里的所有能量单元关掉——反而节省主人的钱。
这可能听起来像是进取号战舰(电影《星际迷航》中战舰)中的场景,但是我们也许在2017年看到这些场景都将开始发生——而且你要确定你有能力来投入在这些项目中。
人工智能、数据科学等对于物联网的影响,意味着你要能够处理无线接口层、不同设备、边缘处理、实时系统和深度学习等领域的工作。
不断发展的大数据技术
我们已经看到了在2016年天文数字般的增长,但是在下一年,随着大数据越来越普及并不断被企业所接受使用,大数据的预算还会继续增长。大多数企业也意识到了他们需要改进该领域的商业模式,这也就意味着需要更多的数据科学家来获取并处理大量的额外数据。
如果你想要寻找一个数据科学的职位,大数据的知识和数据框架是非常重要的。你尤其需要看看 ApacheHadoop,HDFS,Hbase,Spark,Stom,Solr和Kafka.
由大数据引领的医疗行业
数据科学已经在控制流行病和预测病人行为等方面发挥了重要作用。2015年,数据科学帮助预测了西尼罗病毒在美国的爆发,并达到了85%的精度。而且在今年早些时候,一个科学家团队开发了一个可以预测蝙蝠携带埃博拉病毒的模型。期待着2017年数据科学在医疗行业的进一步应用,并希望医疗行业能够不断找到更好的方式来满足日常需求和拯救生命。
随着电子医疗记录仪记录数据量的增加,我们所处理的数据已经达到历史最高水平。尽管大量的数据有他自身的有点和缺点,但是对于数据科学家而言这里存在着巨大的商机,期待他们在2017来破解这些数据的秘密,如果你正在寻找一个新兴市场,那么医疗行业就是了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12