京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2017年,这两个大数据岗位一定会火
讨论哪个大数据岗位会火之前,我们先来简单的分析一下大数据领域的行情,这里重点说一下当前的情况。
2016年,互联网行业遇到了资本寒冬,抛开大公司不说,一些中小型的公司不断的缩减预算,因为很难融到钱。
但是从大数据这个角度出发去看的话,会发现即使其他类型的技术岗位行情不太好,但大数据领域一直还是不错的,这一方面国内大数据政策推动的原因,另一方面是中小型的公司想拿到钱那必须有可谈的技术故事,是的,那就是数据,或者说数据驱动。
所以,不管怎么说,17年,整体大数据领域的整体市场需求还是偏良性的(相对于其他技术类型来说)。
但是,受14年开始,大数据培训市场批量水流线生产大数据工程师的影响,目前大数据需求市场会有些小混乱,所谓混乱是指技术水平参差不齐,包括大量打着大数据旗号的传统数据库工程师(这个很大一部分原因也是培训机构造成的);企业需求招聘不清晰、对大数据岗位定位混乱。
这种乱象,从身边获取的简历,各种招聘现象,以及各种大数据讨论社群的相关话题讨论中可以看出。
并且这种乱象会持续比较长的一段时间,直到接受正统知识体系教育科班大数据工程师们充斥需求市场,降低大数据速成工种比例,以及企业公司对大数据有足够的认知之后,才会逐渐消失,市场价格才会逐渐趋于良性(当然,那个时候大数据领域的技术福利就会下降了)。
还是以2017年说事,受大数据培训市场进一步影响,以及受各大院校16年开始往大数据市场池子投放正规军的影响,低门槛的大数据开发,以及相对基础要求较低的数据分析类的大数据职位会有一些影响。
总体表现就是薪酬好像不会像以前那般好谈了,然后就是缺口也在慢慢的变小,因为市场上绝大部分的号称大数据工程师的都是处于这种阶段的。
当然,能够上升到诸如大数据架构师这种级别的人,依然是市场的香馍馍。
基于以上这些情况,在大数据领域中,还是有些岗位需求量会走高的。
是的,2017年一定会火的。
算法以及数据挖掘
当然,这里指的算法以及数据挖掘与传统的可能还是有所区别的,不管是模式还是所使用的工具,或者各种工程化的形式,区别还是蛮大的,可能不变就是算法的原理了。
国内四五年的大数据发展落地,抛开大些的公司不说,就绝大部分一般公司来说,在基本数据处理,数据浅层价值的挖掘(最典型如报表价值的输出)这块已经有足够的累积了。
那必然会往更高层级去演化,诸如挖掘数据中的个性化,做一些更深层次的预测,以及研究内容的深层价值,文本挖掘、NLP等,甚至是深度学习,人工智能AI的层级。
这些领域除了比较新的深度学习、AI等,其他其实在更早的时候都有人在研究,那在这里为何把他列到这里来说,那是因为个人数据挖掘与大数据关联之后,很多东西都有其独特性。
包括数据各个阶段处理的模式,应用场景的不同,实际工业生产中算法设计的模式(最典型如大数据模式下,偏爱于统计分析即样本数对结果影响较大的算法),甚至是算法最终工程化的模式,使用到的工具,都有很大差别。
最起码,我个人认为,传统的数据挖掘工程师与我这里所说的数据挖掘工程师还是两类人。
但是,我们也知道,学校里是很难有大数据挖掘这种专业存在的,所以,这个岗位的人才来源有两种:
懂算法以及数据挖掘相关东西,补充大数据相关知识结构体系,逐渐适应大数据模式下的挖掘模式。
在大数据领域摸爬滚打足够多的年份,逐渐从实操中补充数据挖掘相关知识体系结构。
前一种人理论知识足够丰富,但是在工程化的能力上以及实际应用场景的映射上稍弱,一不留神只能在大公司能找到角色定位,因为中小公司养不起不能实际工程化只会理论的纯算法工程师。
后一种人实操能力会比较强,理论相对比较薄弱,但能根据实际业务场景设计算法模型,还能负责工程化业务化,这种人在中小型公司吃得开,在大公司估计只能沦为纯算法研究工程师的工程化助手。
但不管哪种,在2017年,都会迎来需求新高,并且在百家齐放的时代,野路子出身的实操数据挖掘选手反倒会更受欢迎,毕竟纯算法研究的人力的成本太高。
数据爬取工程师
或许有个更为熟知的简称“爬虫工程师”。
其实一直以来,大部分人对于爬虫工程师的认知,或许并不会归于大数据领域中来,但我个人认为最起码从16年开始,应该是要归于大数据体系的。
我记得在《DT时代变革的反思》一文中(这篇是15年写的,你看现在互联网开放数据真的是被重视起来了,茫茫多以公开数据起家的公司),甚至在其他相关的文章中,一直强调大数据时代一个很重要的数据来源,那就是互联网公开数据集。
在2016年,这个特征表现的尤为突出,各种公司纷纷把目光定准互联网公开数据集,以期通过互联网公开数据,挖掘其中的价值,意图变现。
在他领域就不都说,在大数据垂直行业,比较典型的就是催生了很多以互联网公开数据为基础数据来源的各种数据分析咨询顾问公司。
关注新媒体行业的,估计没几个人不关注的,毕竟没几个人不用微信的,诸如新榜(前几天的2017新榜大会还是蛮轰动的),其监测的数据应该绝大部分都是通过检测爬取的方式获取的。
那么,在2017年,数据爬取只会和大数据领域联结的更紧密。
作为大数据整个业务链路中的第一环,负责数据源的接入,有什么理由把人家单独丢开呢?!
在2017年,“内容价值变现”口号“甚嚣尘上”同时,作为抓住内容第一环,海量数据的获取,数据爬取工程师的重要程度会逐渐被人认可。
当然,与此同时,上面说到的数据挖掘岗位,偏向于文本挖掘、画像体系构建、NLP之类的,也会更受欢迎。
所以
是的,2017年,这两个大数据的岗位一定会火起来,不信,我们到时候瞧瞧(反正不准你咬不了我 哈哈)。
其实还有更大的证据证明这两个岗位一定会火起来。
我司,俺部门(大数据部门)招数据挖掘&爬虫工程师,当然还有大数据开发工程师,你看连我司都招了,大数据市场这几个职位能不火么。
好了,不扯,说正经的(好像说着上面都不是正经的样儿):
1、需求数据挖掘工程师一枚,不要纯搞算法理论的,需要有算法分布式工程化能力,需求文本挖掘项目经验。
2、需求大数据开发工程师一枚,三年左右大数据技术背景,各种hadoop生态组件都玩过点,能够进行spark应用开发,会点java后端东西,附带点数据挖掘技能更佳。
3、需求爬虫工程师一枚,java爬虫、python爬虫体系都无所谓,需求能够规模化、自动化爬取数据,会点java后端技能更好,有微信、微博数据爬取更佳。
最后,讲真,这两个方向在大数据领域真的是有市场的,挖掘算法类的就说了,跟不少猎头类的朋友也都聊过,一直是刚需,而爬虫类的,应该会被逐渐重视的,因为数据获取的模式逐渐在改变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12