
SPSS如何实现数据转换
在进行数据分析时,常需要对原始数据进行适当的转换。也许需要将连续变量转换为分类变量(比如:将年龄转换为<30岁组和≥30岁组),或者将分类变量重新编码(比如:将血型A、B、O、AB转换为A型和其他),又或者要生成新变量,SPSS都可以帮您实现。
首先是我们的示例数据,变量分别是血型(1=A,2=B,3=O,4=AB)、年龄、左右耳听阈、吸烟史和饮酒史。
我们先说说如何 生成新变量。
示例数据有左耳听阈、右耳听阈,若我们想看看左右耳听阈之差呢?也就是说,我们要根据现有的左右耳听阈,新生成一个左右耳听阈之差的变量。在SPSS工具栏中选择 转换-计算变量,弹出对话框如下。首先需要定义新变量的名称,也就是图中的目标变量。在这里,我们定义为左右耳听阈之差。此外,我们可以选择类型和标签定义变量类型和标签。然后,在右侧文本框写出数字表达式,即可。当然,您也可以通过函数组进行公式的书写和条件的设置。
接下来,我们探讨下变量的 重新编码。
示例数据的年龄是以连续变量存储的,我们如何将其转换为分类变量呢?在SPSS工具栏中选择 转换-重新编码为不同变量,弹出对话框如下。这里说一句,转换-重新编码为相同变量虽说也可以助我们达到目的,但因其覆盖原始变量的劣势,不推荐使用。
将年龄选入中间的文本框,此外,需定义输出变量的名称。接下来,选择旧值和新值定义编码规则。比如,我们在旧值中写入0到29岁的范围,新值定义为1,点击添加,直到完成重新编码。返回到上图页面,点击更改。至于血型的重新编码,操作大体是一样的,您不妨亲身尝试一下。
关于范围的设置,需要明确一下端点的归属。如图,我们定义0到29岁为1组,也就说≥0和≤29的都被分到1组。另外,文本框中关于旧-新的赋值,按规则先后顺序执行。比如,0到29为1;29到49为2,那29是被分到1组还是2组呢?按照规则顺序,第1条>第2条>第3条,我们就可以知道29会被分到1组。数据分析培训
倘若,我们是这样的赋值规则:第1条:29到49;第2条:0到29。那29就是2组了。亲证有效哦!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18