
随着信息技术和网络及各类传感设备、海量存储技术的飞速发展,数据的定义和收集方式产生了革命性的变化,大数据应运而生。相比传统分析方法,大数据技术拥有无可比拟的优势,然而大数据技术所引发的一系列关于认知论的哲学难题——大数据的假设及伦理问题——同样不容忽视。John Symon和Ramón Alvarado 2016年发表在《大数据与社会》(Big Data & Society)的论文《我们可以信任大数据吗?把科学哲学运用在计算机软件上》(Can we trust big data? Applying philosophy of science to software)表示:在很多情况下,道德与认识论问题密不可分。解铃还需系铃人,只有尽可能弄清大数据如何影响并改变了认识论,才能从根本上改善大数据技术潜在的问题。例如,通过大数据技术我们可以知道什么?这些技术的局限性在哪里?以及大数据的“新”到底体现在哪里?
有关大数据的主流文献常常表现出对科学哲学和认知论的不同看法,结论均基于一个假设:大量的数据及通过大数据分析发现的模式是独立于理论基础的。换句话说,很多大数据学者错误地认为数据量越大,分析结果就越可靠,而理论立场可有可无。这种研究大数据而不考虑当代科学哲学的做法既不明智也不可取。大数据的核心在于如何使用大数据技术来捕捉和分析数据,而大数据技术多涉及算法,我们只有充分理解各种算法的局限性和风险,明白这些算法会如何引致以及引致什么样的误差,才能决定到底多大程度可以对这些算法施以信任、加以限制。
文章首先介绍了大数据的定义并试图解释大数据的局限性,然后就以往研究对大数据的批评进行了概述,并接着论证为什么科学哲学和社会认识论与大数据技术息息相关。解决认识论担忧的最好办法是参与到计算建模与模拟的科学哲学辩论当中。基于Paul Humphreys提出的“认知模糊”,作者表示,大数据的“认知模糊”关键在于大数据技术对错误管理和错误检验的忽视,而错误问题同时也是大数据认识论的一个重要特征。要改善大数据认识论的缺陷,就必须正视误差的影响。基于这一考虑,文章就误差检验与纠正的主要特性及软件误差和路径复杂性之间的关系进行了阐述,并介绍了误差检验的常规统计方法(如Mayo的严格检验及模拟验证),以及当处理大数据的软件系统受到高度制约时这些误差检验的缺陷。最后,以谷歌流感趋势为例,文章进一步讨论了大数据技术的局限性,尤其是局限性的根源。
那么,我们可以信任大数据技术吗?文章表示,这不仅仅在于软件的开发与修正本身,而更加在于认知对软件的开发—修改—更新这个循环过程的指引作用。大数据技术是科学哲学与社会认识论争辩的产物,在运用时不应脱离科学哲学思想的指引。缺乏认知则会大大限制我们发现错误的能力。
总而言之,大数据技术作为一种工具不可避免地存在局限性。从本质上讲,这些局限性反映了大数据技术背后理论的缺失。更重要的是,这些局限性清晰地表达了大型软件系统的常规误差监测、修正与评估对内在认识论的挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18