京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析技术热情背后的交叉因素
在“数据分析技术成为主流”(Analytics Goes Mainstream)一文中,我对目前以数据为主导的决策模式得以如此广泛应用的原因进行了解释。或许除了其应用范围外,同样令人感兴趣的还有这股数据分析技术热情背后的许多交叉因素。或许存在诸多其他因素,但我这里想介绍以下九个因素。
1. 全面质量管理(Total Quality Management,简称TQM)和六西格玛管理计划(six-sigma program)培养出一代重视严格运用数据的产品经理。六西格玛计划遭到滥用和曲解是毫无疑问的事实,但是我认为,以数据为主导的决策方式所带来的成功,极大影响了现在企业内部对高等统计式数据分析更为广泛的兴趣。
2. 数量金融学将运筹学、物理学、生物学、供应链管理学及其他领域的一些理念用于解决货币及市场问题。经过一些转变,许多数据密集型技术,比如投资组合理论,现在正从形式上的金融学科转化成日常管理的工具。
3. 正如Google公司CEO埃里克·施密特(Eric Schmidt)今年8月谈到的,现在我们两天内所产生的信息量就相当于人类自有文字记载以来至2003年的总和。显然,这个统计是以比特(bit)为计量单位的,而且Google的这一估计会由于高清视频的剧增而有所偏颇,但是这个总体观点是正确的:人们及各类组织目前产生数据的速度远超过任何人类或程序可以收集、消化或做出反应行动的速度。手机作为传感及通讯的平台作出了巨大贡献,企业应用及图像生成系统同样功不可没。现在,世界上有更多的领域以日益标准化的方式装备起各类数据仪器,其规模远超以往任何时候:Facebook的状态更新、全球定位系统(GPS)、ZigBee无线通讯技术及其他“物联网”(Internet of things)技术,以及运用于越来越多的产品上的条形码及RFID电子标签技术等等,这些只是其中的一部分。
4. 正当我们人类作为一个物种,产生以往任何时候都远远要多的数据的时候,摩尔定律(Moore's Law)及其一些推论(比如有关硬盘驱动器的克来德法则)正为我们创建起一个计算构架,使数据处理的成本效益可以比以往任何时候都高。当然,这些数据处理过程还会产生更多数据,加剧了数据过量的问题。
5. 继推行业务流程重组/企业资源计划(BPR/ERP)、互联网泡沫以及将服务导向架构作为一个业务发展主题的努力基本失败之后,供应商们目前正主推数据分析技术。数据分析技术可以用来销售服务、硬件和软件;可以用于每个垂直细分市场;适用于各种企业规模;而且与其他宏观层面的发展动向相连:智能电网(smart grids)、碳足迹、医疗成本控制、电子政务、市场营销效率、精益制造(lean manufacturing)等等。总之,许多供应商有充分的理由在其市场进入策略中重视数据分析。许多完成的投资交易增强了这个着重数据分析的承诺:SAP公司对Business Objects公司的收购是其历来规模最大的一次并购交易,而IBM、甲骨文(Oracle)、微软及Google公司都已在数据分析领域花费了数十亿美元收购相关企业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06