
SPSS—描述性统计分析—探索性分析
菜单
除了可以计算基本的统计量之外,也可以给出一些简单的检验结果和图形,有助于用户进一步的分析数据。使得用户能够从大量的分析结果之中挖掘到所需要的统计信息。
适用范围
对资料的性质、分布特点等完全不清楚的时候
Analyze -> Descriptive Statistics -> Expore
数据源
ceramics.sav
因变量列表
用于选入待分析的变量
因子列表
用于选择分组变量,根据该变量取值不同,分组分析因变量列表中的变量
标注个案
选择标签变量
统计量
描述性
计算一般的描述性统计量,及指定的均数可信区间
M-估计量
描述集中趋势的统计量,用于稳健估计
界外值
分别输出5个极大值和极小值
百分位数
输出变量5%,10%,25%,50%,75%,90%,95%分位数
绘制
带校验的正态图
选择是否进行正态校验,且是否输出相应的Q-Q图
伸展与级别Levene检验
当选入分组变量时,该功能才被激活,主要用于比较各组之间的离散程度是否一致。在这里可以选择“未转换”,用于方差齐性检验
选项
输出结果
个案处理分析结果
包括观测量、缺失值等信息
描述性统计量
包括:均值、95%置信区间、方差、中位数、标准差、最大最小值、偏度和峰度等信息
集中趋势分布的3种较佳平稳测度
较佳测度之一:中位数等
中位数
与均值和众数大不相同,中位数是依赖于数据的主体部分而不是极值,因此它的值不是过分地受某几个观察值的影响
平稳估计量
如果对数据来源的总体做出某个假设(比如假定服从正态分布),则会有更佳分布位置的估计量,这种估计量称为平稳或稳健测度的估计量
较佳测度之二:修正均值
由于均值深受极端值影响,因此可通过去掉一些远离主体数据的极端值,进而获得一个对于分布位置简单而平稳的估计量
5%修正均值
是通过去掉所有观察值中最大的5%和最小的5%的数据而获得
调整后的均值与中位数可更好的利用数据
较佳测度之三:M估计
将极端值计算在内,而赋予比靠近中央值较小的一个权重,这种方法可借助M估计或采用广义最大似然估计
M-estimators:平稳分布位置的最大似然估计量
Huber的M估计值
Tukey双权重估计值
Hampel重复递减M估计值
Andrew波形估计值
M-估计器
极值
这里用标注个案来标记极值
正态性检验
其中Premium变量对应的K-S检验P值和Shapiro-Wilk检验P值均为0.000,非常显著,应该拒绝原假设。所以,此变量的数据分布不是正态分布。
而Standard数据的分布不是显著的,可以认为是正态分布
在‘探索’里出现的Kolmogorov-Smirnov 检验,它的右上角有一个a 的注释号。它将Kolmogorov-Smirnov 检验改进用于一般的正态性检验。
而在‘非参数检验’里出现的Kolmogorov-Smirnov 检验,是没有经过纠正或改进的。
该正态性检验只能做标准正态检验。
SPSS 规定:当样本含量3≤n≤5000 时,结果以Shapiro—Wilk(W 检验)为难,当样本含量n>5000 结果 以Kolmogorm —Smimov(D检验)为准。
问题:
(1) 在实际应用中常出现检验结果与直方图、正态性概率图不一致,甚至几种假设检验方法结果完全不同的情况。
(2) Shapiro—Wilk 检验(Ⅳ 检验)和经过Lilliefors 显著水平修正的Kolmogorov—Smirnov 检验(D 检验)是用 一个综合指标(顺序统计量Ⅳ 或D)来判定资料的正态性由于两种方法都是用一个指标反映资料的正态性,
所以当资料的正态峰和对称性两个特征有一个不满足正态性要求时,两种方法出现假阴性错误的机率均较 大;而且两种方法的检验统计量都是进行大小排序后得到,所以易受异常值的影响。
(3) Kolmogorov—Smirnov 单一样本检验是根据实际的累计频数分布和理论的累计频数分布的最大差异来检验资料的正态性,可对正态分布进行拟合优度检验。但它并非检验正态性的专用方法,因此它的检验效率是最低的,最容易受样本量和异常值等因素的影响。
方差齐性检验
如上图,Sig > 0.2,并无显著差异。
正态Q-Q图
正态性检验可以通过直观的Q-Q图,进行人工验证。
Q-Q图是一种散点图,对应于正态分布的Q-Q图,就是由标准正态分布的分位数为横坐标,样本值为纵坐标的散点图. 要利用QQ图鉴别样本数据是否近似于正态分布,只需看QQ图上的点是否近似地在一条直线附近,而且该直线的斜率为标准差,截距为均值.
如上图,batch=Standard Q-Q图上的点在一条直线附近,可以认为是正态分布,和正态性检验Lilliefors,Shapiro-Wilk得出的结果一致。
反趋势正态 Q-Q 图
如上图,反趋势正态概率Q-Q图以变量的观测值为X坐标,以变量的Z得分与期望值的偏差为Y坐标。
batch=Standard 图的观测点离期望值很集中,说明符合正态分布。
盒子图
Premiun中有部分异常数据,数据偏大。需要进行异常值检测。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18