京公网安备 11010802034615号
经营许可证编号:京B2-20210330
再追溯大数据时代如何保证信息安全
数据正在每天为你做着网络生活笔记:你喜欢什么?看到了什么?做出了怎样的反应?你的性格喜好?心情如何?……生活中,我们在每一时刻,每个行为都产生着数据。我们的网络浏览痕迹、电商购物喜好、社交网络习惯等网络“足迹”都以数据的形式存储了下来。它们精准及时、事无巨细。而借助于对这些数据的研究和分析,就可以拼出一个比你更了解自己的“你”。
对海量数据的分析挖掘能创造巨大的物质财富和社会价值。然而,数据的大量聚集导致隐私泄露无处不在,个人、企业的信息安全面临严重威胁,亟待通过完善法律法规等方式予以解决。
“大数据”产业蕴藏巨大潜力
大数据的价值不可估量,被誉为未来世界的“石油”。企业通过对海量数据的分析挖掘,能从中发现商机,清晰掌握客户需求,准确锁定目标客户。
2013年,美剧《纸牌屋》的成功,让全世界都意识到了大数据的力量。《纸牌屋》的出品方N etflix仅在当年第一季度就新增300多万用户,半年之内股价涨幅超三倍。这是因为《纸牌屋》是从3000万付费用户的收视选择、400万条评论、300万条搜索记录中总结收视习惯,根据对用户喜好的精准分析进行创作的。
“大数据产业蕴藏着巨大潜力,能创造巨大的物质财富。”梦芭莎集团董事长佘晓成说,“每个企业都应该打造自己的数据库,大数据技术让我们在生产过程中就能进行及时调整,使用大数据技术后,库存售罄率从80%大幅提升到95%。
大数据不仅能创造物质财富,还能创造社会价值。中国工程院院士邬贺铨表示,海量的交通信息、社保信息、消费记录、地理信息等掌握在政府部门、通信运营商、互联网企业等机构手中,将成为解决交通拥堵、雾霾、看病难、食品安全等问题的利器,以及政府了解社情民意的重要窗口。
信息安全成发展主要障碍
尽管大数据蕴藏巨大潜力,但也给个人、企业的信息安全带来巨大风险,信息安全问题已成为产业发展的主要障碍。
首先,大数据时代,数据的大量聚集大大增加了大规模数据泄露事件发生的可能,企业的信息安全也面临严重威胁。
世界知名信息安全厂商赛门铁克近日发布报告称,随着大数据时代的到来,2013年超过5 .52亿条个人身份信息被泄露,泄露数据的数量是2012年的4倍,大规模泄露事件从2012年的1起增加到8起,每一起事件泄露的信息都超过千万。
其次,大数据时代,隐私信息将“无处遁形”,公民个人将面临安全风险。信息安全专家、南京瀚海源信息科技有限公司首席执行兴说,大数据分析的前提是海量的数据,只要连接到网络,公民的姓名、身份证号、手机号码、银行账号密码、位置信息等隐私数据都会在其不知情的情况下被全部抓取,现行法律法规并未对此类行为作出任何规定。
“无处遁形”的隐私信息和大数据分析的广泛使用,将给公民个人带来巨大的安全风险。国际关系学院信息科技系副主任王标说,大数据时代,个人隐私数据越来越多地被连接和分析,公民的账号密码、手机号码、身份证号等敏感信息会被不法分子轻易获取,为账户盗刷、诈骗、抢劫等犯罪打开方便之门。
大数据时代,保存海量数据的企业极易引来黑客攻击,因为数据的大量汇集使得黑客一次攻击就能获得大量有效数据,加之企业的信息安全意识有待提高,一旦发生数据泄露,不仅给用户带来安全风险,对企业声誉、经济效益也是重大打击。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04