京公网安备 11010802034615号
经营许可证编号:京B2-20210330
再追溯大数据时代如何保证信息安全
数据正在每天为你做着网络生活笔记:你喜欢什么?看到了什么?做出了怎样的反应?你的性格喜好?心情如何?……生活中,我们在每一时刻,每个行为都产生着数据。我们的网络浏览痕迹、电商购物喜好、社交网络习惯等网络“足迹”都以数据的形式存储了下来。它们精准及时、事无巨细。而借助于对这些数据的研究和分析,就可以拼出一个比你更了解自己的“你”。
对海量数据的分析挖掘能创造巨大的物质财富和社会价值。然而,数据的大量聚集导致隐私泄露无处不在,个人、企业的信息安全面临严重威胁,亟待通过完善法律法规等方式予以解决。
“大数据”产业蕴藏巨大潜力
大数据的价值不可估量,被誉为未来世界的“石油”。企业通过对海量数据的分析挖掘,能从中发现商机,清晰掌握客户需求,准确锁定目标客户。
2013年,美剧《纸牌屋》的成功,让全世界都意识到了大数据的力量。《纸牌屋》的出品方N etflix仅在当年第一季度就新增300多万用户,半年之内股价涨幅超三倍。这是因为《纸牌屋》是从3000万付费用户的收视选择、400万条评论、300万条搜索记录中总结收视习惯,根据对用户喜好的精准分析进行创作的。
“大数据产业蕴藏着巨大潜力,能创造巨大的物质财富。”梦芭莎集团董事长佘晓成说,“每个企业都应该打造自己的数据库,大数据技术让我们在生产过程中就能进行及时调整,使用大数据技术后,库存售罄率从80%大幅提升到95%。
大数据不仅能创造物质财富,还能创造社会价值。中国工程院院士邬贺铨表示,海量的交通信息、社保信息、消费记录、地理信息等掌握在政府部门、通信运营商、互联网企业等机构手中,将成为解决交通拥堵、雾霾、看病难、食品安全等问题的利器,以及政府了解社情民意的重要窗口。
信息安全成发展主要障碍
尽管大数据蕴藏巨大潜力,但也给个人、企业的信息安全带来巨大风险,信息安全问题已成为产业发展的主要障碍。
首先,大数据时代,数据的大量聚集大大增加了大规模数据泄露事件发生的可能,企业的信息安全也面临严重威胁。
世界知名信息安全厂商赛门铁克近日发布报告称,随着大数据时代的到来,2013年超过5 .52亿条个人身份信息被泄露,泄露数据的数量是2012年的4倍,大规模泄露事件从2012年的1起增加到8起,每一起事件泄露的信息都超过千万。
其次,大数据时代,隐私信息将“无处遁形”,公民个人将面临安全风险。信息安全专家、南京瀚海源信息科技有限公司首席执行兴说,大数据分析的前提是海量的数据,只要连接到网络,公民的姓名、身份证号、手机号码、银行账号密码、位置信息等隐私数据都会在其不知情的情况下被全部抓取,现行法律法规并未对此类行为作出任何规定。
“无处遁形”的隐私信息和大数据分析的广泛使用,将给公民个人带来巨大的安全风险。国际关系学院信息科技系副主任王标说,大数据时代,个人隐私数据越来越多地被连接和分析,公民的账号密码、手机号码、身份证号等敏感信息会被不法分子轻易获取,为账户盗刷、诈骗、抢劫等犯罪打开方便之门。
大数据时代,保存海量数据的企业极易引来黑客攻击,因为数据的大量汇集使得黑客一次攻击就能获得大量有效数据,加之企业的信息安全意识有待提高,一旦发生数据泄露,不仅给用户带来安全风险,对企业声誉、经济效益也是重大打击。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20