
大数据如何帮助企业实现智能制造
大数据时代,随着互联网、物联网、云计算、云技术、智能终端等信息技术的迅猛发展,在影响着人们生活的同时,也无时不改变着制造业企业的运作模式。几乎所有行业所拥有的数据都在增长,这也成为大家共同面临的挑战和机遇,制造业自然也不例外。
随着国家大力倡导‘中国制造2025’,且智能制造技术的进步和企业信息化管理理念的普及,制造业企业的运营越来越依赖信息技术。制造业整个价值链、制造业产品的整个生命周期,都涉及到非常多的数据,比如产品数据、运营数据、价值链数据、外部数据等等,种类繁多,这些数据将会为企业带来非常多的价值。
对于传统企业来讲,也不例外。大数据的价值被传统产业所认可,它通过技术创新与发展,以及数据的全面感知、收集、分析、共享,为企业管理者和参与者呈现出看待制造业价值链的全新视角。
大数据是如何实现智能制造的?
一个成功转型智能制造的企业,在生产线、生产设备上都将配备传感器,抓取数据,然后经过无线通信连接互联网,传输数据,对生产本身进行实时监控。而生产所产生的数据同样经过快速处理、传递,反馈至生产过程中,将工厂升级成为可以被管理和被自适应调整的智能网络,使得工业控制和管理最优化,对有限资源进行最大限度使用,从而降低工业和资源的配置成本,使得生产过程能够高效地进行。这就好比现在很多制造型企业使用的易云科技MES智能制造管理解决方案,就是基于工业制造云服务、工业大数据分析等云计算技术之上,通过机联网、RFID、智能穿戴设备等物联网技术实现人、机、料、环等之间的‘互联’和‘感知’,为客户量身打造的‘透明化生产、数字化车间、智能化工厂’,减少人工干预,从而提高工厂设施的整体协作效率、提高产品质量一致性。
如何使用大数据进行设备管理?
此外,过去在设备管理方面,由于设备在运行过程中的磨损,会影响产品品质。而使用信息技术、物联网技术后,可以通过实时感知数据,明确产品故障,生产过程中所有因素均能精确控制,真正实现生产智能化。因此,大数据直接决定了‘工业4.0’所要求的智能化设备的智能水平。在此方面,易云科技MES智能制造管理解决方案中的‘设备管理套件’可以作为很好的借鉴。其涉及到的层面包括设备资产管理、设备维修管理、设备预防性维护管理、设备运行绩效统计分析、设备OEE稼动率分析等,通过实时看板监控设备运行状态、运行绩效;运用智能终端提示、提前预警维修、保养作业,并对设备使用绩效做出统计分析和评价。
此外,利用大数据监控所有的设备生产流程,能够在生产过程中不断实时优化和降低生产能源消耗。
实现智能制造,大数据是基础
实现智能制造,必须使用大数据,包括在数据采集、数据管理、订单管理、智能化制造、定制平台等得到充分应用。帮助制造业企业提升营销的针对性,降低物流和库存的成本,减少生产资源投入的风险。此外,对大数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降,并将极大地减少库存,优化供应链。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18