
运营商如何充分“掌控”数据 以大数据换未来
运营商多元化拓展需要带给其他行业新的价值,这个价值可能是更好终端、更好网络、更好平台、更好内容。但所有价值的核心是运营商如何提供更好的对策,承载这个核心的则是“数据”,运营商能否充分地掌控“数据”并对“数据”进行有效诠释,将影响运营商多元化转型未来。
运营商所能赋予的价值
一、如何充分掌控“数据”
1、掌控“数据”的背景
运营商可以称为“数据巨头”,但运营商目前的发展与“数据巨头”并不相称。运营商拥有更为核心的用户基础数据(年龄、性别、账单等),以及用户通信数据(位置、流量、语音等),这两个核心数据是一般企业无法比拟的。正是因为运营商能够掌控用户的核心数据,所以运营商存在能够掌控其他行业的数据的可能性。
缺乏其他行业数据,运营商所有核心数据的价值没有发挥余地。运营商重点将落在其他行业数据的拓展上,运营商的多元化拓展,实际是运营商对多元化数据的拓展,运营商数据版图越广阔,业务将越多元。
2、掌控“数据”的模式
运营商如何掌控各行各业的数据,运营商需要同时构建通信服务平台、以及与各行业相应的信息服务平台来支撑各行各业的服务,运营商通过通信服务平台与信息服务平台来记录消费者、商家/政府、服务商的各种各类数据。再通过平台上的人工智能、大数据分析来实现数据价值的变现。
在这个模式上,运营商并不是直接向消费者提供服务,而是由专业的服务提供商向消费者提供服务。这是否意味着运营商被边缘化或管道化,恰恰相反的是运营商掌握了产业链的核心价值——“数据”,运营商通过强大通信服务平台捆绑信息服务平台进而掌控产业链上下游的“数据”。产业链的核心并不是服务商所能提供的内容,而是运营商对数据的诠释与运用。对症下药、服务匹配才是产业链的核心价值。
NTTdocomoHealthcare推出WM平台,主要用来收集、分析、预测用户健康数据。在这平台上构建各种各类与健康相关的应用例如“健康管理”、“步行挣钱”、“作息管理”、“女性专属”、“预防接种”、“怀孕监控”、“育儿记录”等。合作商通过这个平台为消费提供专业服务与产品,例如医疗建议、保健建议、穿戴设备、测量仪等,个人消费者通过应用获得专业的服务,普通商家或广告商通过平台获得潜在营销客户。该平台将运营商、服务/产品提供商、个人消费者、普通商家/广告商四个角色有效串联起来,形成共生共赢的生态系统。
运营商掌控“数据”的核心,是搭建数据平台,专注数据的运营,通过大数据分析或人工智能,为消费者提供针对性服务、为服务商提供客户匹配与服务、产品优化建议,为商家/广告商提供客户匹配与营销策略优化建议。运营商对数据的掌控,实际是运营商通过数据支撑来实消费者、服务商、商家之间的有效沟通。
二、如何有效诠释“数据”
数据不是被制造出来,数据只是被记录而呈现,数据是对现实世界的描述。我们之所以能通过数据来诠释现实世界,是因为我们通过数据构建能解释现实世界的模型。数据仅当被记录的时候存在,诠释现实世界的模型仅被数据验证才显真实。数据不断被记录,模型不断被优化,模型才能更接近现实世界。
数据的诠释,其实是指运营商与现实世界互动的过程,更确切的是运营商对现实世界进一步理解的过程。运营商通过大数据分析,不断优化诠释现实世界的模型,找到现实世界运作的机理,发现现实世界的不足与问题,进而针对性提出相应的对策与解决方法。
数据的诠释的过程,即是运营商创造价值的过程。数据的诠释带有一定目的或方向,要么解决问题或难题,要么让事情变得更好,当然是好的目的与方向,才能带来价值。例如在制造业方面,运营商可以帮助工厂监测失败信号、产品质量控制、提升安全、提升运营等;在农业方面,运营商可以帮助农民扩大规模、提高质量、节省农动力、获取有价值信息,提供安全可靠食物等。正如NTT解决方案,所有解决方案都有初步的想法与目的,这个想法与目的则源于运营商对行业的初步理解。数据的诠释,一方需要通过大数据挖掘、人工智能来理解数据,另一方面则需要运营商通过真实世界的切实了解实际问题与情况。
价值的大小,完全取决于运营商掌控的数据量,以及对数据的诠释能力。运营商掌控数据越多、诠释数据越透彻越能给出有价值的对策。正如NTT解决方案中,运营商通过大量各类感应设备、物联网等尽可能多收集数据,累积数据,再通过大数据分析、人工智能来诠释数据,然后做出预测与行动,最终创造价值。运营商需要尽可能收集数据,以及构建强大数据分析与人工智能平台,才能成功利用数据创造价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26