京公网安备 11010802034615号
经营许可证编号:京B2-20210330
运营商如何充分“掌控”数据 以大数据换未来
运营商多元化拓展需要带给其他行业新的价值,这个价值可能是更好终端、更好网络、更好平台、更好内容。但所有价值的核心是运营商如何提供更好的对策,承载这个核心的则是“数据”,运营商能否充分地掌控“数据”并对“数据”进行有效诠释,将影响运营商多元化转型未来。
运营商所能赋予的价值
一、如何充分掌控“数据”
1、掌控“数据”的背景
运营商可以称为“数据巨头”,但运营商目前的发展与“数据巨头”并不相称。运营商拥有更为核心的用户基础数据(年龄、性别、账单等),以及用户通信数据(位置、流量、语音等),这两个核心数据是一般企业无法比拟的。正是因为运营商能够掌控用户的核心数据,所以运营商存在能够掌控其他行业的数据的可能性。
缺乏其他行业数据,运营商所有核心数据的价值没有发挥余地。运营商重点将落在其他行业数据的拓展上,运营商的多元化拓展,实际是运营商对多元化数据的拓展,运营商数据版图越广阔,业务将越多元。
2、掌控“数据”的模式
运营商如何掌控各行各业的数据,运营商需要同时构建通信服务平台、以及与各行业相应的信息服务平台来支撑各行各业的服务,运营商通过通信服务平台与信息服务平台来记录消费者、商家/政府、服务商的各种各类数据。再通过平台上的人工智能、大数据分析来实现数据价值的变现。
在这个模式上,运营商并不是直接向消费者提供服务,而是由专业的服务提供商向消费者提供服务。这是否意味着运营商被边缘化或管道化,恰恰相反的是运营商掌握了产业链的核心价值——“数据”,运营商通过强大通信服务平台捆绑信息服务平台进而掌控产业链上下游的“数据”。产业链的核心并不是服务商所能提供的内容,而是运营商对数据的诠释与运用。对症下药、服务匹配才是产业链的核心价值。
NTTdocomoHealthcare推出WM平台,主要用来收集、分析、预测用户健康数据。在这平台上构建各种各类与健康相关的应用例如“健康管理”、“步行挣钱”、“作息管理”、“女性专属”、“预防接种”、“怀孕监控”、“育儿记录”等。合作商通过这个平台为消费提供专业服务与产品,例如医疗建议、保健建议、穿戴设备、测量仪等,个人消费者通过应用获得专业的服务,普通商家或广告商通过平台获得潜在营销客户。该平台将运营商、服务/产品提供商、个人消费者、普通商家/广告商四个角色有效串联起来,形成共生共赢的生态系统。
运营商掌控“数据”的核心,是搭建数据平台,专注数据的运营,通过大数据分析或人工智能,为消费者提供针对性服务、为服务商提供客户匹配与服务、产品优化建议,为商家/广告商提供客户匹配与营销策略优化建议。运营商对数据的掌控,实际是运营商通过数据支撑来实消费者、服务商、商家之间的有效沟通。
二、如何有效诠释“数据”
数据不是被制造出来,数据只是被记录而呈现,数据是对现实世界的描述。我们之所以能通过数据来诠释现实世界,是因为我们通过数据构建能解释现实世界的模型。数据仅当被记录的时候存在,诠释现实世界的模型仅被数据验证才显真实。数据不断被记录,模型不断被优化,模型才能更接近现实世界。
数据的诠释,其实是指运营商与现实世界互动的过程,更确切的是运营商对现实世界进一步理解的过程。运营商通过大数据分析,不断优化诠释现实世界的模型,找到现实世界运作的机理,发现现实世界的不足与问题,进而针对性提出相应的对策与解决方法。
数据的诠释的过程,即是运营商创造价值的过程。数据的诠释带有一定目的或方向,要么解决问题或难题,要么让事情变得更好,当然是好的目的与方向,才能带来价值。例如在制造业方面,运营商可以帮助工厂监测失败信号、产品质量控制、提升安全、提升运营等;在农业方面,运营商可以帮助农民扩大规模、提高质量、节省农动力、获取有价值信息,提供安全可靠食物等。正如NTT解决方案,所有解决方案都有初步的想法与目的,这个想法与目的则源于运营商对行业的初步理解。数据的诠释,一方需要通过大数据挖掘、人工智能来理解数据,另一方面则需要运营商通过真实世界的切实了解实际问题与情况。
价值的大小,完全取决于运营商掌控的数据量,以及对数据的诠释能力。运营商掌控数据越多、诠释数据越透彻越能给出有价值的对策。正如NTT解决方案中,运营商通过大量各类感应设备、物联网等尽可能多收集数据,累积数据,再通过大数据分析、人工智能来诠释数据,然后做出预测与行动,最终创造价值。运营商需要尽可能收集数据,以及构建强大数据分析与人工智能平台,才能成功利用数据创造价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04