
大数据给保险监管带来机遇与挑战
首先,大数据有助于推进监管制度现代化。监管部门可以将现有监管信息管理系统中的监管数据与股东、高管外部背景信息进行大数据关联挖掘,推进公司治理监管制度现代化。依托大数据,保险业信用信息数据库可得以建立,失信联合惩戒机制也可得以建立健全,进而推进市场行为监管制度现代化。同时大数据还可实现保险机构承保、理赔、投资等领域与偿付能力监管指标的关联分析,推进偿付能力监管制度现代化。
其次,大数据有利于推动监管手段现代化。通过开放监管信息、加大信息披露力度,可以有效发挥大数据在增强市场监督约束方面的积极作用。将保险机构经营管理全流程数据纳入非现场监管框架,建立多维大数据分析挖掘体系,为监管部门加强风险预警和防范提供大数据基础。综合运用网络舆情研判、投诉语音识别等非结构化数据分析手段,完善和优化保险公司服务评价体系,进一步促进保险消费者权益保护。
再次,大数据有利于推动监管机制现代化。在大数据背景下,各监管当局之间的信息共享成为可能,通过建立外部协作机制,可以有效防止和规避监管套利。还可依托大数据理念开发建设各类保险监管信息系统,运用大数据思维改造和优化传统监管流程,有助于改善监管资源错配的问题,形成更加合理的内部协作机制。
尽管监管部门在运用信息技术和数据资源推进监管现代化方面已取得显著的进展,但各级监管干部对数据信息的重视程度还有待加强,监管理念需要由过去的经验驱动向数据驱动升级。在大数据背景下,创新型业务监管难度更大,更容易造成风险跨行业传递,在风险防范与发展创新之间求取平衡的难度更高,对现行保险监管模式带来了新的挑战。此外,复合型保险监管人才队伍亟待加强。复合型专业人才的匮乏是制约保险监管机构运用大数据技术进行创新监管的重要因素之一。我国保险监管干部队伍建设起步较晚、基础相对薄弱,特别是与大数据运用相关的非现场监管、保险统计和信息化监管干部队伍建设与其他金融监管部门相比,还存在一定的差距。
加强监管的对策建议
笔者就运用大数据促进保险业改革创新、加强保险监管的对策有以下建议:一是完善组织实施机制。监管部门要承担引领角色,建立保险业大数据发展和应用统筹协调机制,强化行业大数据资源统筹管理。建议设立专门的推进大数据应用领导小组,推动实施一批行业大数据示范应用工程。加强保险信息共享平台建设,使其成为行业重要的公共基础设施,在此基础上实现保险业同其他相关行业开展更加广泛、深入的数据交换和信息共享。从企业层面看,鼓励保险机构设立专门大数据应用机构,密切跟踪大数据前沿技术,拓展行业大数据应用领域和方向,实现大数据资产的价值最大化。
二是建立健全监管制度。监管部门需要顺应大数据时代的发展潮流,以开放包容的心态支持保险机构运用大数据开展产品、服务和管理创新。研究制定大数据、云计算、互联网保险等相关领域监管规则,为创新留有余地。深化保险统计改革,创新统计调查信息采集方式,探索构建大数据监管模型。强化大数据标准化工作,研究制定保险大数据的采集标准、技术标准和质量标准。
三是加快推进信息共享。应推动已建和在建的保险监管信息系统实现互联互通,建立多部门网上项目并联平台,实现跨部门、跨层级行政许可审批、核准、备案的统一受理、同步审查、信息共享和透明公开。并完善车险信息共享平台,研究建立非车险业务信息共享机制,开展保单登记、农险、健康险等行业信息共享平台建设。汇集以客户为逻辑核心的保单级大数据信息,在全行业层面拓展大数据深度应用领域,建立保险业信用信息系统,发挥大数据在信用评价和失信惩戒方面的基础作用,大力推动保险业与银行、征信、公安、交通、医疗、气象等行业外相关机构实现数据共享。
四是重视数据信息安全。应完善IT治理机制,研究制定大数据条件下的保险业信息系统安全规则和数据安全规则,实现大数据资源采集、传输、存储、利用、开放等全流程的规范管理,健全与大数据时代相适应的信息安全保障体系。高度重视大数据时代保险消费者个人隐私保护问题,加强对大数据滥用、侵犯个人隐私等行为的管理和惩戒。监管部门数据开放要坚持风险可控、循序渐进原则,研究建立监管数据安全保障体系,确保监管数据信息安全。
五是加强专业人才培养。要鼓励保险机构与高校及科研机构采取跨机构、跨院系联合培养方式,大力培养兼具经济管理、金融保险、精算统计和数据科学、数据工程复合背景的保险大数据专业人才。还要支持保险机构与互联网等其他机构开展大数据应用深度合作,加大行业外大数据人才引进和培养力度,完善大数据监管人才培养及职业发展机制。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26