京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 视频解析服务体系实现监控产业转型
大数据时代已经来临是不争的事实,其呈现出的“4V”——Volume(数据体量巨大)、Variety(数据类型繁多)、Velocity(处理必须快速)、Value(价值密度较低)的特点,公安部第三研究所王文斐博士认为这与视频大数据特征完全符合:
Volume:视频数据来源广,规模大,存储要求已达到TB/PB/EB级;
Variety:视频数据内容涵盖丰富,包括地里环境信息、对象状态信息、事件活动信息等是包含众多信息的直观和集中汇聚体;
Velocity:视频数据的时效性要求视频应用必须快速完成传输、处理和分析等过程,必须具备在海量数据中高效挖掘线索的能力;
Value:视频数据是为再现现实场景而产生的,在记录精度上(画质、时间等)要求不断提高,同时也要求视频应用必须准确的处理内容。
王文斐博士分析,数据的规模大及丰富性对于传统视频系统而言将是前所未有的新的难题。首先,以监控视频为例:正常高清摄像头产生的数据量大约1~ 2GB/小时,一天24~ 48GB,对于一个平安城市项目而言,总的监控路数通常几千到上万路,这对于传统的存储行业是难以想象的;其次,大数据环境下的多源异构数据感知复杂、大数据自动化处理能力薄弱、大数据融合检索手段匮乏、大数据共享受限、大数据应用缺乏规范等因素导致视频大数据的实际利用率低;再者,视频大数据缺乏一套大数据的有效提取,满足安防业务需求的专业工具,缺乏一个大数据资源组织管理与集中共享的平台,缺乏一个基于不同领域的大数据专业知识库与标准,缺乏一支专业的大数据分析、研判人才队伍等因素导致视频大数据在实际工作中出现漏洞;最后,视频大数据在事前防控和事后破案中需投入大量的成本处理海量的视频数据。
目前现有的视频监控系统缺少整体性设计是关键的问题所在,导致后期工作的职责错位、条线不顺,应用杂乱、低水平重复,投资回报率低等问题出现,因此顶层设计打通过各个公安机构内部的各个“信息孤岛”成为了迫在眉睫的工作。王文斐博士认为根据业务、数据和应用直接的变化关系进行整体性设计是解决现状的有效手段。“视频监控的深度应用和视频监控产业的进一步发展,不仅仅是建设更多、更清楚、能联网的视频探头而已,更重要的是通过一个视频解析和服务体系的建设,从‘处理、分析、挖掘、评价’等环节出发,实现对海量视频资源的深度应用,以此来促进整个视频监控产业实现从监控到理解的转型。”
为落实完善社会治安防控运行机制的要求和信息资源互通共享和深度应用,视频服务体系的设计将实现全域覆盖、全网共享、全时可用、全程可控、健全机制的服务功能。王文斐博士介绍视频解析中心作为顶层设计的理想模式与监控视频顶层设计的目标向吻合。据介绍,视频解析服务体系的理想模式是实现数据层面横向集成,纵向贯通、共享共用,健全区域协作和部门联动机制,支持扁平化视频勤务指挥模式,健全实战指挥机制,并提供分析预测能力,健全社会治安形式分析研判机制。
安防进入智能化时代之后,国内对各种智能视频产品/算法的统一、客观的评测指标体系几乎没有,针对目前评测体系不完善,建设智能视频评测平台有效对该问题进行规范。王文斐博士介绍未来将从三个方面建设该平台:一、制定一个规范、标准化的评测指标体系,二、开发一套完整、基准性的智能视频算法和评测工具,三、搭建一个开放、稳定的网络评测平台,以此为生产企业、集成企业、研发机构、终端用户等提供测评服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04