京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下,百货行业如何革命
进入互联网、大数据时代,中国百货行业发生了翻天覆地变化,以前“一铺养三代”,现在街上到处都是旺铺出兑,更不用说各种百货商场的状况了。究其原因,中国百货行业外有国内经济增长减速、社会零售总额增长放缓以及网络购物发展的困境,内有相较购物中心自营能力不足、千店一面同质化竞争严重问题,深处“内忧外患”之中。
革命的目的,是为了让一切变好,是为了过得更好。大数据时代,革命的途径,就是怎么利用大数据。我们知道,很多百货公司纷纷走上了自我革命的道路,成为大数据应用的探索者:王府井百货推出了“王府井大数据平台”、新世界百货利用VIP数据进行圈层营销,天虹百货打造“天虹微店’开启全渠道购物,银泰百货“全场铺设WIFI”等等。
恰好,前些天帆软传说哥与该行业的某集团的IT负责人进行了一些交流,了解到他们所做变革,毕竟传说哥在数据展示和分析圈混了几年,今天就抛砖引玉,分享一些自己的见解,商超行业如何应用大数据。
对于百货商超公司而言,要用收集、应用什么数据?我想100%的人都会不假思索说用户标签和交易行为,也就是用户画像了。的确是的,像百度推广、腾讯广点通、LBS广告、京东猜你喜欢等等,广告都是智能的,这都是对用户标签、行为数据的分析和追踪,然后推送给他们合适的广告信息,这样的广告往往效果最好,因为切中了用户当前或者潜在的需求。
第二个问题,企业为什么要用大数据呢?为了挣钱嘛,为了挣更多的钱嘛。上面讲到大数据对于用户的价值,确实能推动很多产品的销售,带来很多销售额。但这不够啊!传说哥的东家帆软公司,为什么能发展这么快?原因就是帆软是做报表软件和商业智能软件的,该领域市场大,而企业购买这些软件都是为了自身运营。这就引出了第二个大数据的价值,对于企业运营的作用。没有数据的支撑,你很难知道“昨天发生了什么、为什么会发生、今天发生了什么、明天又将发生什么”,也不知道企业战略战术执行如何;有了数据的支撑,业务运转情况一览无遗,工作效率大大提高,管理和决策将更加轻松自然。
大数据时代的革命行动,说透了就是商超百货要做两件事,一个是用户画像系统,一个是企业运营数据分析中心。
首先是用户画像系统。
其核心是用计算机理解的“词语”,去描绘一个人,一般都是用“标签”+“权重”来做用户画像。与用户相关的数据,分为为静态数据和动态数据。静态数据主要是指他的个人标签,属性,比如他的年龄、职业、性别、收入、地区、婚姻状况、爱好、特征、消费能力、消费周期等。动态数据主要是他在商场内留下的行为数据,常见要素是时间、地点、行为,比如消费时间、所买物品、试衣间试了几次衣服等。收集用户数据的方式很多,如会员卡,如卖场wifi等。
当整个画像系统建立起来后,就是这样的一个场景:顾客使用手机在卖场停留的时间,物品的条码扫描情况,商场收集到这些数据,把这些数据上传到云端,就能更好的为顾客做推荐。例如,你喜欢西餐,你在西餐区买什么东西,喜欢什么品牌,在店里两三次的消费习惯等这些数据都会被系统记录下来,通过手机微信以及其它大数据结合以后,就会为你量身定做一套专属于你的一个DM单。现在的情况是所有人收到的DM单都一样,酱油,醋,萝卜,白菜,不管你喜欢不喜欢一股脑都丢给你,以后情况可能就不会是这样了,你喜欢某个品牌,这个品牌也许会通过大数据被“找”出来,单独推送给你,无论你什么时间到那都会有优惠。
其次是企业运营数据中心,也就是数据分析系统,可以准确实时的向领导层、中间管理层反映集团运营状况,如销售情况、库存情况、利润情况、人力资源情况等,辅助管理决策。
同时,业务人员查看卖场营运数据的场地和设备限制问题也将解决,业务人员可以在任何时间,通过内网或外网,在手机,平板等设备上了解实时的卖场营运数据,比如商品销量情况,畅销还是滞销,还有营运的一些基础数据,异常报表类数据。还比如管理人员在巡店的过程中,可以通过手机扫描商品条形码或二维码,就可以从移动端查看到这个商品在我们整个企业每家店的情况,包括他是跟哪个供应商合作,是多少钱的合作,多个批次商品的销售情况,以及一些合作的具体细节。数据分析系统需要ETL工具、BI工具等来建设实现,这里有几个关键点:一是对多源数据、多数据结构的支持,可以进行多数据源关联;二是性能优越,大数据量大并发的情况下扛得住;三是支持多样化的数据展示方式和交互效果,比如图表移动应用等;四是系统的可扩展性强,维护简单,如新需求可以及时响应,或者业务人员可以自己制作报表。
最后,再表述一个观点:任何的改革,都是自上而下推进的,比如商鞅变法,比如海尔的重生,没有上层领导的强力支持,改革就是走走形式,最后无疾而终。
所以商超百货行业要变革,首要是领导层观念的变革,认可时代的变化,认可数据的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28