
大数据战略带来商机几何
国务院办公厅印发的《关于运用大数据加强对市场主体服务和监管的若干意见》(以下简称《意见》),在业界看来,等于启动了政务版的大数据战略。但这一举措所带来的积极影响,绝不会仅仅停留在政务层面。
在2015年的这个节点,任何有关大数据的探讨,都不要忽略数据自身的价值。《意见》明确提出,要推进政府和社会信息资源开放共享。在业界看来,这样的举措无疑为社会打开了一个巨大的宝库,因为数据已经被视为一种新的资源。
在过去,评估一个企业的资产,通常只会评估其硬件设施、专利以及品牌价值等,未来,如果忽略了数据,就可能意味着忽略了该企业最主要的资产,尤其对于一些积累了大量数据的企业而言。
毋庸置疑,政务版大数据战略的出台,大数据及相关产业首先受益。业界分析,从事大数据采集、提供应用解决方案等细分领域,将获得市场扩张机遇。
市场研究机构预计,在企业和政府部门需求的共同推动下,大数据产业将迎来年均逾100%的增长率,到2016年市场规模有望达到百亿元。
在对市场一片看好的背景下,大规模数据仓库、非关系型数据库、数据挖掘、数据智能分析、数据可视化等大数据关键共性技术将成为下一轮科技攻关的主要方向。
《意见》提出,要进一步健全创新体系,鼓励相关企业、高校和科研机构开展产学研合作,推进大数据协同融合创新,加快在这些技术上的突破。同时,还要支持高性能计算机、存储设备、网络设备、智能终端和大型通用数据库软件等产品创新。
除了大数据产业,政务版大数据战略还明确提出,“大力培育发展信用服务业”。
中国人民银行2013年年底发布的《中国征信业发展报告》介绍,当时中国的征信机构已有150多家,发展改革委有关数据显示,广义上的中国信用服务管理机构已达6000多家,其中中小企业信用担保机构4800多家。
这样一个过去不为社会所关注的行业,有着巨大的社会需求。
数据显示,我国的消费信贷2011年是8.8万亿元,2012年10.4万亿元,2013年12.9万亿元,信用规模的发展一直在高位。这一数字意味着社会对于信用服务业的需求在不断增加。
而今,政务版大数据战略的出台,再次扩展了信用服务业的发展空间。《意见》提出,鼓励发展信用咨询、信用评估、信用担保和信用保险等信用服务业。对符合条件的信用服务机构,按有关规定享受国家和地方关于现代服务业和高新技术产业的各项优惠政策。支持鼓励国内有实力的信用服务机构参与国际合作,拓展国际市场。
业界预判,在此政策支持下,信用服务业将迎来一次腾飞。与此同时,因为要“处理好大数据发展、服务、应用与安全的关系”,信息安全产业也会随之发展。
而更多的市场人士则从“实施大数据示范应用工程”中嗅到了进一步的商机。《意见》要求,紧密结合各地区、各部门实际,整合数据资源为社会、政府、企业提供服务,其中,要在某些领域率先开展大数据示范应用工程。
这些领域包括工商登记、统计调查、质量监管、竞争执法、消费维权等。而随着工作的进展,更多的领域也将实施大数据示范应用工程,如宏观管理、税收征缴、资源利用与环境保护、食品药品安全、安全生产、信用体系建设、健康医疗、劳动保障、教育文化、交通旅游、金融服务、中小企业服务、工业制造、现代农业、商贸物流、社会综合治理、收入分配调节等。
政务版大数据战略致力于加强对市场主体的服务和监管,推进简政放权和政府职能转变,提高政府治理能力,但也带来了无限商机,等待着市场参与者去把握。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18