
企业间的较量 2017大数据的十个走向
大数据发展已经成为未来科技发展的走向和必要的开端,预计2017年大数据十大新趋势走向将会迎来爆发式的数据增长.
1.大数据实现可视化服务
数据可视化技术让隐藏在大数据资源背后的真相呈现在众人面前。无论数据怎样形成,无论数据资源在哪里,图形数据可视化可以让企业组织在业务繁忙的同时对数据进行检索与处理。可视化数据不需要任何编程基础。你只需要上传你的数据,便能轻松地创建和发布图表,目前国际上已经有一些企业在发展大数据可视化做深入的研究,专门提供大数据可视化服务。
2.大数据进入资本市场
最近发数据的行业应用也开始火热起来。"微众银行"的大数据金融概念深得国家支持,符合"普惠银行"的政策。相信以后会有更多的行业跟大数据扯上关系,走向资本市场,我们期待的是国内大数据企业在未来资本市场的大爆发。
3.大数据产生在非结构化数据库里
结构化数据分析的历史已经很久了,至少在计算机数值计算开始的时候就有了,说已经有四十年也不为过,新闻,视频,图片,音频,网页这些形态每天在数以万计的产生庞大的数据量,而这些数据不是以符号数字的形式存在的,大型的社交网络,媒体网络,都是以视频,图片,音频,网页形式存在,未来大数据将在非结构化中日益增加。
4.Hadoop依然是老大
Hadoop这个单词如今铺天盖地,几乎成了大数据的代名词。仅仅数年时间,Hadoop从边缘技术迅速成长为一个事实标准。如今想玩转大数据,搞企业分析或者商业智能,没有Hadoop还真不行。Hadoop实质上更多是一个分布式数据基础设施:它将巨大的数据集分派到一个由普通计算机组成的集群中的多个节点进行存储,意味着您不需要购买和维护昂贵的服务器硬件。
5.非机构化数据将要凸显
一类信息能够用数据或统一的结构加以表示,我们称之为结构化数据,如数字、符号;而另一类信息无法用数字或统一的结构表示,如文本、图像、声音、网页等,我们称之为非结构化数据。结构化数据属于非结构化数据,是非结构化数据的特例,科技日益发展壮大,非机构化数据将要凸显占领结构化高度。
6.消费垃圾数据将继续
人们将继续追寻大数据,一直追到垃圾堆看到垃圾数据,诈骗电话、免费WiFi窃取用户信息等关系到消费者权益的问题被逐一曝光,针对广大中国网民,就各种假货和欺诈行为通过更直接的方式进行采样和分析判断,这些都将是无用的垃圾数据,甚至是有害的数据。
7.企业不需要大数据CEO
当前可以指引公司的发展方向的责任才重大,作为回报,相当多的公司利润落入管理层的腰包。如果在这一级别上作出错误的人事任命,发生灾难的可能性将非常明显。因此,目前企业不会填补大数据执行官,大数据还没有发展到人人皆知的地步。
8.数据造假成为安全隐患
大数据允许混杂数据甚至错误数据。这是因为,大数据能够通过造假数据的特征将其辨识出来。造假的数据和平常的数据不一样,可以通过环比、同比、类比,发现数据中的异动,判断企业是否存在数据造假行为,即便如此,数据造假问题短时间是不可能消失的,同时带来的安全隐患,从而为各个行业指导错误的方向,失之毫厘,差之千里。
9.数字智慧城市将要壮大
智慧城市相对于数字城市概念,最大的区别在于对感知层获取的数据进行大数据处理,从而获得支撑和保障智慧城市顺利运营的多元信息,要实现对数字信息的智慧处理,前提是引入大数据处理技术,从而来整合分析跨地域、跨行业、跨部门的海量数据的处理,将特定的信息应用于特定的行业和特定的解决方案中,智慧城市的应用过程实际上就是对数据采集、分析、存储和利用的过程,大数据是智慧城市各个领域都能够实现"智慧化"的关键性支撑技术。
10.结构化数据安全性低
结构化数据的存在至少有40年之久,这种数据存储在数据库里,可以用二维表结构来逻辑表达实现数据,因此加密方式多样化,安全性高,相比非结构化数据最近几年才兴起,它是以图片,音频,视频,文档形式存在,加密繁琐困难,安全性低,然而二者属于包含的关系,多数企业更倾向于以结构化数据的形态存在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26